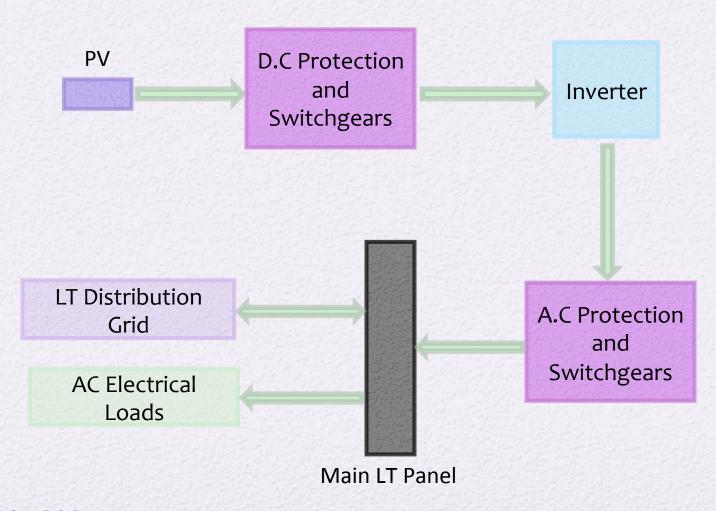
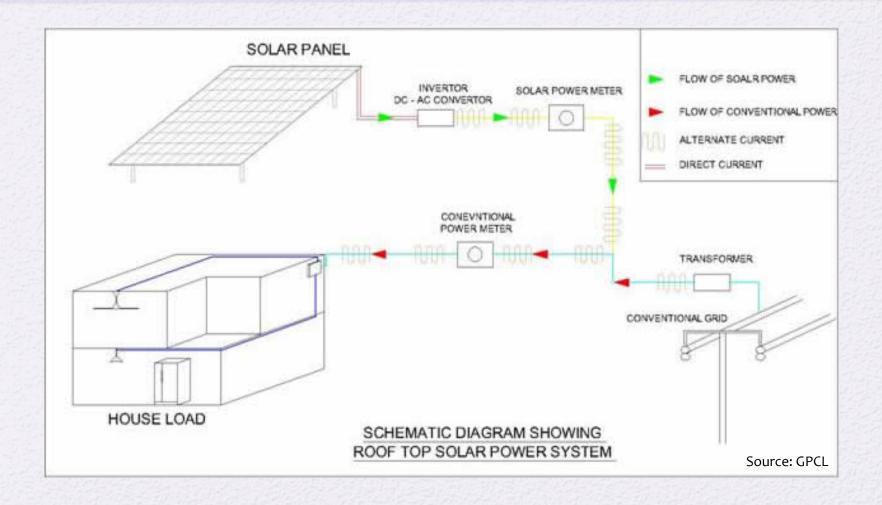
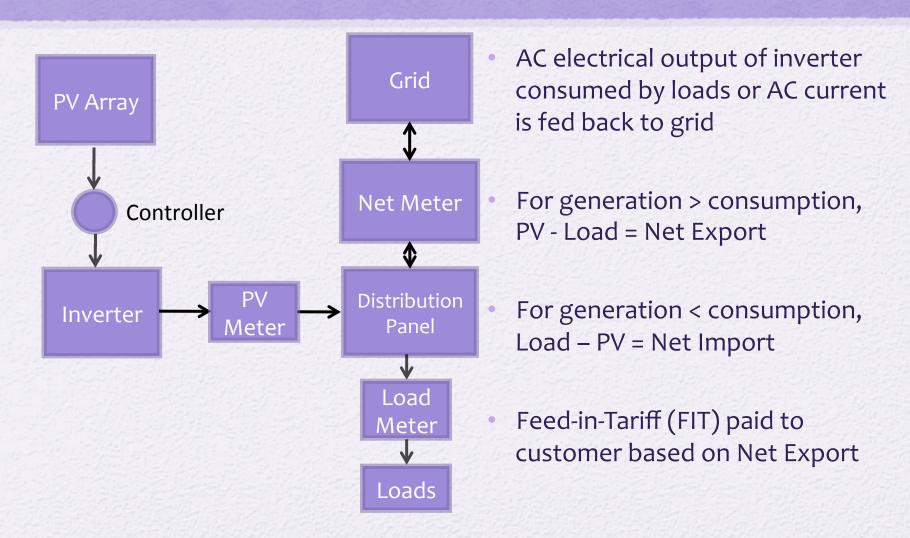

Grid Connected SPV Rooftop Power Plant Technology

Grid Integration of small scale DRE systems Workshop Prayas Group Pune and NCPRE at IIT, Bombay

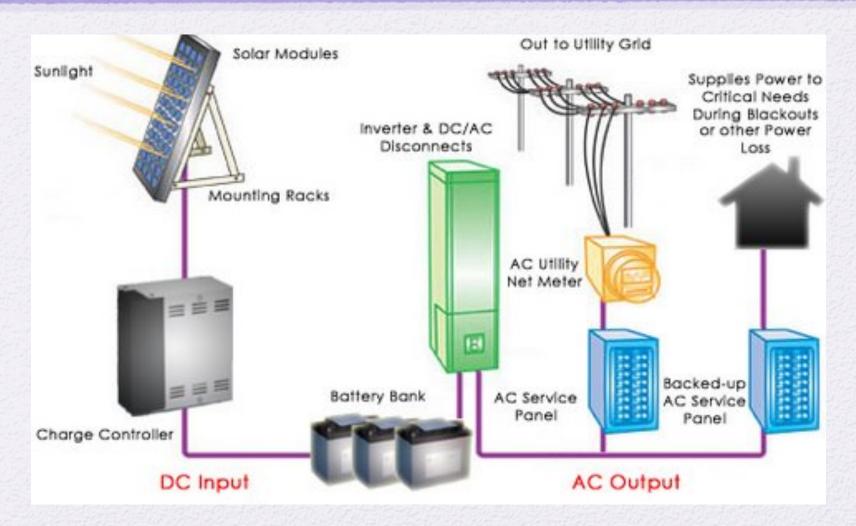

Address by Dr. Farooq Abdullah

- National consultation in New Delhi on net metering in grid solar projects on Dec. 20, 2011.
- "Prepare an action plan for introducing net metering in commercial and residential roof top solar projects."
- "With solar power cost coming down from Rs. 18/- per unit in 2010 to Rs. 8/- per unit in 2012, it should be possible to allow consumers feed extra power to the grid."
- "Come out with practical solution to facilitate the process."


Large Scale SPV Power Plant


Rooftop SPV Power Plant

Rooftop SPV Power Plant Operation


Energy Metering and Feed-in-Tariff

Islanding Protection

- Islands are small sections of grid network.
- When grid fails, powering of island can pose risk to workers.
- Inverter output can be incompatible with equipment connected to island when grid fails.
- Anti-islanding operation: Inverter output is isolated from grid network in the event grid fails or is unstable.
- This presents a challenge with LV grid in India in terms of PV capacity utilization.

Grid tied System with Battery backup

Grid tied Battery backup Operation

Figure 1 Normal Grid Operation

- 1) Solar charges batteries
- 2) Solar feeds house load, then
- 3) Solar exports excess to grid

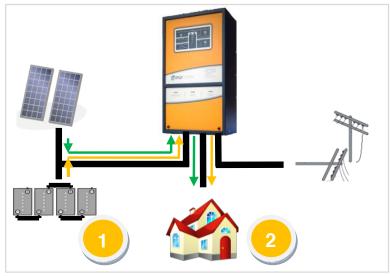


Figure 2 Grid Failure Operation

- 1) Solar charges batteries
- 2) Solar and batteries supply house load only

Selectronic Australia Pty Ltd. Suite 5, 20 Fletcher Rd, Chirnside Park VIC 3116 Australia. Phone +61 3 9727 6600 Fax +61 3 9727 6601 sales@selectronic.com.au www.selectronic.com.au

Utility and User Considerations

- Power quality of grid should not be reduced by grid fed solar power.
- LV grid interface standard will ensure power quality is maintained.
- Personnel safety in the event of mains failure or instability is ensured by anti-islanding operation.
- Automatic protection device recognizes grid failures and cut-offs as well as voltage and frequency fluctuations.
- Manual Switching Devices sensing grid impedance jumps may be used for LV single phase feed-ins.
- PV plant feed-ins to rural grid branch lines can increase line voltage and support weak grid when large loads are present.
- Load consumption and grid feed-in need to be synchronized during day time by tailoring usage patterns to avoid excessive increase in line voltage.

LV Grid Interface Standard

- G83-1/1 (EN 50438) UK Engineering Recommendation for small embedded generator feeding power to domestic grid.

 Voltage and Frequency Range: 207-264V, 47-50.5 Hz

 Max. Export: 5.75kW-1 phase, 11kW-3 phase

 Power Quality: Flicker, DC Injection, Harmonics and PF

 Loss of Mains Test:
- **IEC 61727:** PV Systems Characteristics of the Utility Interface for PV systems <10kW connected to low voltage grid.
- **IEC 62116:** Islanding prevention methods
- Customize LV grid interface standard for India.
 Voltage and Frequency Range for synchronization
 Time to connect and disconnect PV generator
 Metering configuration

Germany Rooftop Program

- 20% energy produced by renewable sources.
- 80% of >1GWp PV installations are rooftop in Germany.
- FIT introduced by law and scaled back in phase wise manner to allow market growth.
- Feed-in-tariff: € 0.30-0.40/kWh for 10kWp to 1MWp
 PV size (€ 0.95 in 2005)
 9% digression from 2011.
- Average Electricity Cost approx. 25 Euro Cents/kWh.

Gujarat Rooftop Program

- GPCL has launched 5MWp distributed rooftop PV power plant program in Gandhinagar.
- Build, Own, Operate and Maintain model.
- Rooftop owners to lease rooftop space to project developers.
- Torrent Power to purchase clean electricity from project developers at Rs. 11-12.5/unit. (25 year average)
- Project developers to pay green incentives to rooftop owners based on solar generation.
- Green incentives to cover major % of electricity bills for rooftop owners.
- Solar PV Energy generated by plant will be monitored by separate meter and fed to LV public grid.

Centralized Solar PV Generation

- 12-15% of Solar power generated by large plants is lost in step-up and step-down transformers used in transmission and distribution of power.
- Requires 3-7 Acres land per MWp installation.
- Large solar arrays are complex, need matched PV modules and are prone to string and MPPT losses.
- Automated monitoring is mandatory.
- Cost effective: Rs. 8-10 Cr/MW.
- MV/HV grid interface is reliable.

Distributed Solar PV Generation

- Use available roof/terrace space.
- Overall performance ratio to point of utility is 10-15% higher due to reduced transformer and cable losses.
- Feed local load and meet peak day time demand.
- Potential to improve local power quality.
- Reduce additional investment and on-going maintenance for DG sets, Batteries and UPS.
- Higher installation cost of Rs. 10-12 Cr/MW.
- LV grid interface is a challenge.

Rooftop Program Implementation Challenges

- Requires LV grid interface standard.
- Large Voltage and Frequency range of operation.
- Power quality issues: PF, DC Injection, Harmonics, EMI, Surge Currents, Voltage Dips.
- Anti-islanding Operation and capacity utilization.
- Battery Operation when grid is not available.
- Dual Mode Inverter is complex and adds to cost.
- Requires solar energy meter in addition to load energy meter.
- Net Metering/ABT (Availability Based Tariff) Meter infrastructure is complex and expensive.

Rooftop Program Recommendations

- High efficiency C-Si technology for limited space on rooftop to enhance local manufacturing.
- Distributed PV architecture for improved performance.
- Customized LV grid interface standard for India.
- Grid interactive battery backup operation to improve plant availability.
- Standardize support structures for rooftop power plants to reduce cost and time to install.
- Develop low cost dual inverter and net energy meter.
- Develop means to harness thermal energy and enhance PV output.
- Large scale manufacturing of plug and play AC modules for direct grid interface.

Thank You!

Are you?