Appendices

These are appendices of the report 'A review of Heat and Health research in India: Knowledge gaps in building climate change adaptation responses' by Prayas, available at Prayas website

आरोग्य, ऊर्जा, शिक्षण आणि पालकत्व या विषयांतील विशेष प्रयत्न

Contents

Appendix: A-1: Historical trends in heat stroke deaths in India	1
Appendix A-2: Risk of heat induced mortality and vulnerable populations - ecological analyses	3
Appendix A-3: Risk of heat induced mortality and vulnerable populations - time series analysis	4
Appendix A-4: Future projections of heat mortality	11
Appendix A-5: Heat morbidity studies among working population	13
Appendix A-6: Heat morbidity studies among urban and rural households	18
Appendix A-7: Heat morbidity studies among hospitalized patients	20
Appendix B-1: Population based vulnerability and adaptation assessments	21
Appendix B-2: Early warning systems	21
Appendix B-3: Studies on effectiveness of heat action plans or their components	22
References	23

Appendix: A-1:

Historical trends in heat stroke deaths in India

Name of author, Publication year, Study location	Study description	Findings
Malik, P. et al, 2021	Study design Trend analysis	The analysis has shown that a total of 660 heat wave events have caused 12,273
India	<i>Study timeline</i> 1978-2014	fatalities (about 332 fatalities every year). Only five states namely, Andhra Pradesh (42%), Rajasthan (17%), Odisha (10%), Uttar Pradesh
Mallik, Bhardwaj, and Singh, "Heat Wave Fatalities over India: 1978–2014."	Primary outcome Direct deaths due to exposure to extreme heat, Heat wave events	(7%) and Bihar (7%) have accounted more than 80% of the heat wave fatalities, although nine states namely, Arunachal Pradesh, Nagaland, Manipur, Meghalaya, Tripura,
	Source of outcome data Indian Meteorology Department	Sikkim, Mizoram, Uttarakhand and Goa have never reported heat wave events and fatalities during 1978–2014. Interestingly, each event has resulted about 104 fatalities in Andhra
	<i>Disaggregated analysis by</i> Gender	Pradesh state. Further, fatalities in Anuma Pradesh state. Further, fatality and density rates have been witnessed to the tune of 0.35 and 3.81 respectively. Temporally, heat wave events have displayed large differences with a significant increasing trend ($P < 0.01$), whereas no trend could be noticed in fatalities. Majorit of events have been witnessed in May and June months. It has been observed that men have been more harshly affected compared to women and children.
Ray, K., et al, 2021	Study design Trend analysis	The contribution of heat waves to total mortality caused by extreme weather events
India	<i>Study timeline</i> 1970-2019	was 12.3%. The trend analysis of last 50 years shows a significant decreased mortality per event and a positive trend in mortality per year
Ray et al., "An Assessment of Long-Term Changes in Mortalities Due	Primary outcome Direct deaths due to exposure to extreme heat, heat wave events	per million population (r2=0.026). The rates have increased by almost 27% in 2010–2019 as compared to 2000–2009 with a corresponding increase (24%) in the number of heatwave
to Extreme Weather Events in India."	Source of outcome data Indian meteorological department	events. Mortality due to heatwaves was very high in Andhra Pradesh, Uttar Pradesh, Odisha, Bihar, and Rajasthan
	Disaggregated analysis by – States	

Kumar, A. et al, et al,	Study design Trend analysis	It was found that there 3014 men died from heat-related causes in 2001–05, which
2021 India	<i>Study timeline</i> 2001–2015	increased to 5157 in the period 2011–15. For women the number of deaths in the corresponding periods were 849 and 1254
Kumar and Singh, "Heat Stroke-Related	Primary outcome Direct deaths due to exposure to extreme heat	respectively. Deaths caused by heatwaves were found to be higher than those resulting from avalanches, exposure to cold, cyclone, tornado,
Deaths in India."	Source of outcome data NA	starvation due to natural calamity, earthquake, epidemic, flood, landslide, torrential rain and forest fire. The study revealed that there are
	Disaggregated analysis by Age, gender	regional variations in the number deaths due to heatstroke. From the perspective of disaster preparedness, it is important to note that deaths from heat strokes occur every year. With rising temperatures, the numbers are likely to increase. The findings of the study highlight this concern.
Mahapatra, B. et al, 2018	<i>Study design</i> Trend analysis)	During 2001–14, 25% of all accidental deaths due to natural causes happened as a result
India	Study timeline 2001-2014	of extreme weather events. Deaths due to extreme precipitation and tropical cyclones declined over time, whereas increasing trend
Mahapatra, Walia, and Saggurti, "Extreme Weather Events	Primary outcome Direct deaths due to exposure to extreme heat	was observed for lightning, and extreme temperature conditions. Most of the extreme weather event induced deaths were due to
Induced Deaths in India 2001–2014."	Source of outcome data Government of India through its National Data Sharing and Accessibility Policy (NDSAP)	lightning, followed by extreme precipitation and temperature extremes. The burden of death was highest in the central part of India. States of Andhra Pradesh, Bihar, Uttar Pradesh, Maharashtra and West Bengal were affected the most by extreme weather events. More
	<i>Disaggregated analysis by</i> Age, gender	males and older population died than their counterparts. Findings suggest that people are adaptive to some extreme weather events such as cold wave and cyclones; whereas adaptation and coping with the heat wave and extreme precipitation seems to be less

Appendix A-2:

Risk of heat induced mortality and vulnerable populations – ecological analyses

Author, year, Study location	Study details	Findings
Dutta, P. et al, 2020	<i>Study design</i> Ecological analysis, Time series analysis	From the ecological analysis, 580 and 306 additional deaths were observed in 2010 and 2014, respectively. Moving average results also gave
Nagpur, Maharashtra	<i>Study timeline:</i> 2009-2015	similar findings. DLNM results showed that the relative risk was 1.5 for the temperature above 45 °C; forward perspective analysis revealed that the
Dutta et al., "Extreme Heat Kills Even in Very	Primary outcome All-cause mortality	attributable deaths during 2010 and 2014 were 505 and 376, respectively. Results from different
Hot Cities."	<i>Exposure variable</i> Daily temperature (maximum, minimum), Relative humidity	methods showed that heat waves in different years had variable impacts for various reasons. However, all the results were consistent during 2010 and 2014; there were 30% and 14% extra-mortalities due to heat comparing to non-heat wave years.
	Source of outcome data Birth and Death Registration Department of municipal corporation	
	Disaggregated analysis by – none	
Azhar, GS, et al,	<i>Study design</i> Ecological analysis	The May 2010 heat wave was associated with significant excess all-cause mortality. 4,462 all-
2014 Ahemedabad, Gujarat	<i>Timeline</i> 2009-2011	cause deaths occurred, comprising an excess of 1,344 all-cause deaths, an estimated 43.1% increase when compared to the reference period (3,118
Azhar et al., "Heat-	Primary outcome All-cause mortality	deaths). In monthly pair-wise comparisons for 2010, we found high correlations between mortality and
Related Mortality in India."	<i>Exposure variable</i> Daily temperature (max, min, mean)	daily maximum temperature during the locally hottest "summer" months of April ($r = 0.69$, p,0.001), May ($r = 0.77$, p ,0.001), and June ($r = 0.39$, p,0.05). During a period of more intense heat (May
	Source of outcome data Birth and Death Registration Department of municipal corporation	19–25, 2010), mortality rate ratios were 1.76 [95% Cl 1.67–1.83, p,0.001] and 2.12 [95% Cl 2.03–2.21] applying reference periods (May 12–18, 2010) from various years.
	Disaggregated analysis by – Gender	

Appendix A-3:

Risk of heat induced mortality and vulnerable populations – time series analysis

Author, year, Study location	Study details	Findings
Wei,Y. et al,	Study timeline 1987-2017	The model with maximum and minimum temperatures and without heat wave
2021 Ahmedabad, Gujarat	<i>Study design</i> Time series analysis	indicator gave the best performance. With this model, we found a substantial and significant increase in mortality rate
Wei et al., "Assessing Mortality Risk	Primary outcome All-cause mortality	starting from maximum temperature at 42 °C and from minimum temperature at 28 °C: 1 °C increase in maximum and minimum
Attributable to High Ambient Temperatures in Ahmedabad, 1987 to 2017."	Source of outcome data Birth and Death Registration Department of municipal corporation	temperatures at lag 0 were associated with 9.56% (95% confidence interval [CI]: 6.64%, 12.56%) and 9.82% (95% CI: 6.33%, 13.42%) increase in mortality risk, respectively. People
	Climate variable Daily maximum, minimum, mean temperature. Heat wave defined by relative threshold percentile and duration	aged \geq 65 years and lived in South residential zone where most slums were located, were more vulnerable. The study observed flatter increases in mortality risk associated with high temperatures comparing the period of 2003-2017 to 1987-2002.
Source of climate data Indian Meteorology Department		
Disaggregated analysis by Age, sex, residential zone		
Rathi. S et al, 2021 Jaipur, Rajasthan Rathi, Sodani, and Joshi, "Summer Temperature and All- Cause Mortality from 2006 to 2015 for Smart City Jaipur, India."	Study timeline 2006-2015	A total of 75,571 deaths (all-cause mortality) for 1,203 summer days (2006–2015) were analyzed in relation to temperature and relative humidity. The mean daily all-cause mortality has been estimated at 62.8 ± 15.2 for the study period. There is a significant increase of 39% per day all-cause mortality at the maximum temperature of 45 °C and above. However only 10% rise per day all- cause mortality for extreme danger days (HI > 54 °C). The mean daily all-cause mortality shows a significant association with daily maximum temperature (F = 34.6, P < .0001) and HI (discomfort index) from caution to extreme danger risk days (F = 5.0, P < .0019).

	Study design Time series analysis	The lag effect of extreme heat on all-cause mortality for the study period (2006 to 2015)
	Primary outcome All cause mortality	was at a peak period on the same day of the maximum temperature (r = 0.245 at P < .01) but continues up to four days. The study
	Source of outcome data Birth and Death Registration Department of municipal corporation	concludes that the effect of ambient heat on all-cause mortality increase is clearly evident (rise of 39% deaths/day).
	<i>Climate variable</i> Daily average temperature, daily maximum temperature, daily minimum temperature and daily average relative humidity	
	Source of climate data Tutiempo Network	
	Disaggregated analysis by Year-wise	
Nori-Sarma, A. et al,	<i>Study timeline</i> 2000–2012	Community-specific average daily maximum temperature over the entire record ranged
2019 Mumbai, Maharashtra	Study design Time series analysis	from 32.5 to 34.2 °C (90.5–93.6 °F). Across communities, total mortality increased 18.1% during heat wave days compared with non-
Jaipur and Churu, Rajasthan	Primary outcome All-cause mortality	heat-wave days [95% confidence interval (Cl): –5.3%, 47.3%], with the highest risk
Idar/ Himmatnagar, Gujarat Nori-Sarma et al., "The Impact of Heat Waves on Mortality in Northwest India."	Source of outcome data Birth and Death Registration Department of municipal corporation	in Jaipur (29.9% [95% CI: 24.6%, 34.9%]). Evidence of effect modification by heat wave characteristics (intensity, duration, and timing in season) was limited. Findings indicate health risks associated with heat waves in
	Climate variable Daily maximum temperature	communities with high baseline temperatures
	Source of climate data Indian Meteorology Department	
	Disaggregated analysis by City-wise	

Nori-Sarma, A. et al,	Study timeline 2000–2012	Propensity Score Matching (PSM) was used to obtain the relative risk of mortality and number of attributable deaths (i.e., absolute risk which incorporates the number of heat wave days) under a variety of heat wave definitions (n = 13) incorporating duration and intensity. Heat waves' timing in season
2019 Mumbai, Maharashtra	Study design Time series analysis	
Jaipur and Churu, Rajasthan	Primary outcome All-cause mortality	
Idar/ Himmatnagar, Gujarat Nori-Sarma et al., "Advancing Our	Source of outcome data Birth and Death Registration Department of municipal corporation	was also assessed for potential effect modification. Relative risk of heat waves (risk of mortality comparing heat wave days to matched non-heat wave days) varied by heat wave definition and ranged from
Understanding of Heat Wave Criteria and Associated Health Impacts to Improve Heat Wave Alerts in	Climate variable Heat waved defined by different temperature thresholds and duration	1.28 [95% Confidence Interval: 1.11–1.46] in Churu (utilizing the 95th percentile of temperature for at least two consecutive days) to 1.03 [95% CI: 0.87–1.23] in Idar and Himmatnagar (utilizing the 95th percentile
Developing Country Settings."	Source of climate data Indian Meteorology Department	of temperature for at least four consecutive days). The data trended towards a higher risk
	<i>Disaggregated analysis by</i> City-wise	for heat waves later in the season. Some heat wave definitions displayed similar attributable mortalities despite differences in the number of identified heat wave days
Singh, N. et al,	<i>Study timeline</i> 2009-2016	A semiparametric quasi-Poisson regression model estimated the effects of temperature
2019 Varanasi, Uttar Pradesh	Study design Time series analysis	extremes on daily all-cause mortality adjusting nonlinear confounding effects of time trend, relative humidity and air
Singh et al.,	Primary outcome All-cause mortality	pollution; stratified by seasons. An effect modification by age, gender and place of death as semi-economic indicator were also explored. Daily mean temperature was strongly associated with excess mortality, both during summer (5.61% with 95% Cl: 4.69–6.53% per unit increase in mean temperature) and winter (1.53% with 95% Cl: 0.88–2.18% per unit decrease in mean temperature). Daily mortality was found to be increased by 12.02% (with 95% Cl: 4.21–19.84%) due to heat wave. The DTV has exhibited downward trend over the years and
"Attributing Mortality from Temperature Extremes."	Source of outcome data Municipal Corporation of Varanasi	
	<i>Climate variable</i> Daily minimum, maximum and mean temperature; relative humidity; Ambient air quality in terms of PM10, S02, NO2 and ground-level O3 concentration	
	Source of climate data Indian Meteorology Department	showed a negative association with all-cause mortality. Significant association of mortality
	<i>Disaggregated analysis by</i> age, gender, place of death, air pollution parameters (PM, SO2, NO2, O2)	and different metric of temperature extreme along with decreasing trend in DTV clearly indicate the potential impact of climate change on human health in the city of Varanasi.

Dutta, A. et al,	Study timeline 2007-2014	Mortality risks rose when daily maximum temperatures were >36.2°C (lower threshold),
2020 Bhubaneswar, Odisha	Study design Time series analysis	and even more when >40.5°C (upper threshold). Every degree above36.2°C increased the mortality risk by 2% (mortality
Dutta et al., "At Which	Primary outcome All-cause mortality	rate ratio: 1.02; 95% Cl 1.01, 1.03). The effects of maximum temperature increased on days
Temperature Do the Deleterious Effects of Ambient Heat 'Kick-in' to Affect All-Cause Mortality?"	Source of outcome data Birth and Death Registration Department of municipal corporation	when minimum temperatures were >25.6°C (median). The effect of heat was immediate and lasted for 0–1 day with no lagged effect. Two temperature thresholds with varying mortality risks provided an opportunity for a
	<i>Climate variable</i> Daily temperature (maximum, minimum) and relative humidity	graded heat warning system.
	Source of climate data Indian Meteorology Department	
	Disaggregated analysis by None	
Hang Fu, et al,	Study timeline 2001-2013	Mortality from all medical causes, stroke, and respiratory diseases showed excess
2018 India	Study design Time series analysis	risks at moderately cold temperature and hot temperature. For all examined causes, moderately cold temperature was estimated
Fu et al., "Mortality Attributable to Hot and Cold Ambient Temperatures in India."	Primary outcome cause specific mortality (stroke, IHD, respiratory diseases; malaria, and cancers were taken as reference)	moderately cold temperature was estimated to have higher attributable risks (6.3% [95% empirical confidence interval (eCl) 1.1 to 11.1] for all medical deaths, 27.2% [11.4 to 40.2] for stroke, 9.7% [3.7 to 15.3] for IHD, and 6.5% [3.5 to 9.2] for respiratory diseases) than extremely cold, moderately hot, and extremely hot temperatures. In 2015, 197,000 (121,000 to 259,000) deaths from stroke, IHD, and respiratory diseases at ages 30–69
	Source of outcome data mortality data from India's Million Death Study (MDS)	
	<i>Climate variable</i> Daily mean temperature	years were attributable to moderately cold temperature, which was 12- and 42-fold higher than totals from extremely cold and
	Source of climate data extremely he main limitat	extremely hot temperature, respectively. The main limitation of this study was the coarse
	Disaggregated analysis by age	spatial resolution of the temperature data, which may mask microclimate effects

Ingole, V. et al,	Study timeline 2004–2013	Temperature above a threshold of 31 °C was associated with total mortality (OR 1.48, CI = $1.05-2.09$) per 1 °C increase in daily mean temperature. Odds ratios were higher among females (OR 1.93; CI = $1.07-3.47$), those with
2017 Vadu, Maharashtra	<i>Study design</i> Time series analysis	
Ingole et al.,	Primary outcome All-cause mortality	low education (OR 1.65; Cl = $1.00-2.75$), those owing larger agricultural land (OR 2.18;
"Socioenvironmental Factors Associated with Heat and Cold-Related Mortality in Vadu	Source of outcome data Health and Demographic Surveillance System (HDSS)	CI = 0.99-4.79), and farmers (OR 1.70; CI = $1.02-2.81$). In winter, per 1 °C decrease in mean temperature, OR for total mortality was 1.06 (CI = $1.00-1.12$) in lag 0–13 days. High
HDSS, Western India."	<i>Climate variable</i> Daily mean temperature, heat and cold season based on summer months and winter months	risk of cold-related mortality was observed among people occupied in housework (OR = 1.09; Cl = 1.00–1.19). The study suggests that both heat and cold have an impact on mortality particularly heat, but also, to a
	Source of climate data National Oceanic and Atmospheric Administration (NOAA), Indian Meteorological Department	- smaller degree, cold have an impact
	Disaggregated analysis by sex, age, ownership of agricultural land, house type, education and occupation	
Mazdiyasni, O. et al	<i>Study timeline</i> 1960-2009	Analysis of changes in summer temperatures, the frequency, severity, and duration of heat
2017 Mazdiyasni et al.,	Study design Probabilistic modelling	waves, and heat-related mortality in India between 1960 and 2009 using data from the India Meteorological Department was
"Increasing Probability of Mortality during	Primary outcome heat-related mortality	performed. Mean temperatures across India have risen by more than 0.5°C over this
Indian Heat Waves."	Source of outcome data Indian meteorological department	period, with statistically significant increases in heat waves. Using a novel probabilistic model, we further show that the increase in summer mean temperatures in India over this
	<i>Climate variable</i> Summer mean temperature and heat wave days	period corresponds to a 146% increase in the probability of heat-related mortality events of more than 100 people.
	Source of climate data Indian meteorological department	
	<i>Disaggregated analysis by</i> residential zones NA	

Rathi.S et al,	<i>Study timeline</i> 2014-2015	Mean daily mortality was estimated at 50.2 \pm 8.5 for the study period with a rise of 20% all-cause mortality at temperature \geq 40°C and rise of 10% deaths per day during extreme danger level (HI: > 54°C) days.
2017 Surat, Gujarat	Study design Time series analysis	
Rathi et al., "Summer	Primary outcome All-cause mortality	Spatial (Zone wise) analysis revealed rise of 61% all-cause mortality for Southeast and
Temperature and Spatial Variability of All-Cause Mortality in Surat City, India."	Source of outcome data Birth and Death Registration Department of municipal corporation	30% for East zones at temperature ≥ 40°C
	<i>Climate variable</i> Daily average temperature, daily maximum temperature, daily minimum temperature and daily average relative humidity	
	Source of climate data Tutiempo Network	
	Disaggregated analysis by residential zones	
Desai, V. et al,	<i>Study timeline</i> 2001-2012	A total of 36,167 deaths for 961 summer days (2001–12) were analyzed. Mean daily
2015 Surat, Gujarat	Study design Time series analysis	mortality was estimated at 37.6 ± 9.4 for the study period. There is an increase of 11% mortality when the temperature crosses
Desai et al., "Effect of	Primary outcome All-cause mortality	40°C. However, there is an increase of 3 (9%) deaths per day during danger-level heat-risk
Ambient Heat on All- Cause Mortality in the Coastal City of Surat, India."	Source of outcome data Birth and Death Registration Department of municipal corporation	days and 6 (18%) deaths per day during high- risk heat days (extreme danger) respectively. Mortality seems to be well correlated with the high temperature ($P < 0.001$) and high heat index (HI) values ($P < 0.001$). The effect
	<i>Climate variable</i> Daily mean, maximum and minimum temperature and daily mean humidity	of extreme heat on mortality is at a peak on day-2 of the maximum temperature.
	Source of climate data Tutiempo Network	
	Disaggregated analysis by Year-wise	

Ingole, V. et al,	Study timeline 2003-2012	Delays of 0 and 0–4 days were considered and relative risks (RR) with 95% confidence intervals (CI) were calculated. Heat was significantly associated with daily deaths by non-infectious diseases (RR = 1.57; CI:	
2015 Vadu, Pune Ingole et al., "Impact of Heat and Cold on Total and Cause-Specific	<i>Study design</i> Time series analysis		
	Primary outcome cause specific mortality (non- infectious, infectious, external causes)	1.18–2.10). There was an increase in the risk of total mortality in the age group $12-59$ years on lag 0 day (RR = 1.43; CI: 1.02–1.99). A high increase in total mortality	
Mortality in Vadu HDSS—A Rural Setting in Western India."	Source of outcome data Health and Demographic Surveillance System (HDSS)	was observed among men at lag 0 day (RR = 1.38; Cl: 1.05–1.83). The study did not find any short-term association between total and cause-specific mortality and cold days.	
	<i>Climate variable</i> Daily minimum and maximum temperature	Deaths from neither infectious nor external causes were associated with heat or cold.	
	Source of climate data Indian Meteorology Department		
	Disaggregated analysis by age, sex		
Ingole, V. et al,	Study timeline 2003-2010	Mortality was found to be significantly associated with daily ambient temperatures	
2012 Vadu, Pune	<i>Study design</i> Time series analysis	and rainfall, after controlling for seasonality and long-term time trends. Children aged 5 years or below appear particularly susceptibl	
Ingole et al., "The	Primary outcome All-cause mortality	to the effects of warm and cold temperature and heavy rainfall. The population aged 20-	
Short-Term Association of Temperature and Rainfall with Mortality in Vadu Health and Demographic Surveillance System."	Source of outcome data Health and Demographic Surveillance System (HDSS)	59 years appeared to face increased morta on hot days. Most age groups were found to have increased mortality rates 7-13 day after rainfall events. This association was	
	<i>Climate variable</i> Daily mean temperature and rainfall	particularly evident in women.	
	Source of climate data Indian Meteorology Department		
	Disaggregated analysis by		

Appendix A-4:

Future projections of heat mortality

Author, year, Study location	Study details	Findings	
Murari, KK. et al 2015 Murari et al., "Intensification of Future Severe Heat Waves in India and Their Effect on Heat Stress and Mortality."	Source of heat data: Indian Meteorology Department Source of mortality data: historical data of heat wave-induced mortality rates obtained from the Ministry of Home Affairs (Government of India)*	The paper projects future heat waves in India based on multiple climate models and scenarios for CMIP5 data. Projections indicate that a sizable part of India will experience heat stress conditions in the future. In northern India, the average number of days with extreme heat stress condition during pre- monsoon hot season will reach	
	Forecasting methodology: linear regression analysis to relate the number of heat wave days per year to the mortality per unit of population		
	<i>Level of analysis:</i> Four states (Delhi, Maharashtra, Orissa, Rajasthan)	30. The intensification of heat waves might lead to severe heat stress and increased mortality	
	Assumption: (1) the regression coefficients remain constant, (2) business-as- usual practice toward heat wave preparedness prevails, and (3) the adaptation capacity of communities does not change over time (4) population fixed as 2001 census		
Dholakia, H. et al 2015 [°]	Source of heat data: Coupled Model Inter-comparison Project Phase 5 (CMIP5) models	Mortality is projected to increase 71 and 140% in the late 21st century under the RCP 4.5 and	
Dholakia, Mishra, and Garg, "Predicted Increases in Heat Related Mortality under Climate Change in Urban India."	Source of mortality data: Observed data on mortality from Sample Registration System (SRS) for the period of 2005-2012	8.5 scenarios, respectively. Urban areas of Delhi, Ahmedabad, Bangalore, Mumbai and Kolkata are projected to experience the highest absolute increases in the heat related mortality in 2080s under the RCP 8.5 scenario	
	Forecasting methodology: temperature-mortality relationships using Poisson regression models		
	Level of analysis: 52 urban areas (population >1 million) that are located in diverse climactic regimes in India		
	Assumption: Not specified		

Climate impact lab,	Source of heat data: Global climate models	India is projected to see around an increase of death rates due to
2020** Climate Impact Lab, "Climate Change and Heat-Induced Mortality in India."	Source of mortality data: India specific mortality data was not used for defining mortality temperature relationship Forecasting methodology: Mortality- temperature relationship estimates	climate change equal to about 10% of the current death rate. That is, 60 deaths per 100,000 population by the end of the century under a scenario of continued emissions (RCP 8.5).
	Level of analysis: City level Assumptions: Not specified	By 2100, around 1.5 million more people are projected to die each year as a result of climate change—at a rate as high as the death rate from all infectious diseases in India today

* no reference for the mortality data was provided and in our further search we could determine specific source of mortality data maintained by ministry of home affairs

** Report

^ Working paper

Appendix A-5:

Heat morbidity studies among working population

Author, year, Study location	Study details	Findings
Venugopal, V. et al	Study timeline 2015-2019	Heat exposures (Avg.WBGT: 28.4 \pm 2.6 °C) exceeded the Threshold Limit Value (TLV) for 70% of workers and was significantly associated with the rise in CBT >1 °C in 11.3% and elevated USG >1.020 in 10.5% of the workers. The heat-exposed workers had 2.3 times higher odds of reporting adverse health outcomes (84%) compared to the unexposed workers (95% CI: 1.74-3.19; p value \leq 0.0001 Mild reduction in kidney function observed in 49% of salt - pan workers, and a high prevalence of kidney stones (33%) among the 91 steelworkers subjected to kidney ultrasour had a significant association with chronic high WBGT exposure above the TLV (p value < 0.034).
2021 Chennai, TamilNadu	Study design Cross sectional (n=1480)	
Agriculture, construction, salt, bricks, auto parts, foundry, garments, and steel industry workers Venugopal et al.,	Health outcome Self-reported signs and symptoms, Core Body Temperature (CBT), Sweat Rate (SwR), and Urine Specific Gravity (USG	
"Epidemiological Evidence from South Indian Working Population—the Heat Exposures and Health Linkage."	Disaggregated analysis by Age, gender, education, smoking-alcohol, workload, sectors	
Venugopal. V et al	<i>Study timeline</i> 2019	The results show that heat exposures (Avg. WBGT = $33.2 \degree C \pm 3.8 \degree C$) exceeded the
2020	Study design Cross sectional (n=340)	Threshold Limit Value (TLV) for 220 workers. 95% of the workers reported symptoms of heat strain and dehydration and significant
Chennai, Tamil Nadu Steel Industry Worker Venugopal et al., "Risk of Kidney Stone among	Health outcome Core Body Temperature (CBT), Urine Specific Gravity (USG) and Sweat Rate (SwR)	associations between heat exposures, rise in Core Body Temperature (CBT) ($p = 0.0001$) and Urine Specific Gravity (USG) ($p = 0.018$) were observed. Of the 91 workers subjected to rena ultrasound, 33% were positive for kidney/ ureteral stones ($n = 25$) & other structural
Workers Exposed to High Occupational Heat Stress - A Case Study from Southern Indian Steel Industry."	<i>Disaggregated analysis</i> age, sex, education, alcohol, smoking, work intensity	renal anomalies (n = 5). Renal/urologic anomalies were higher in the heat-exposed workers (AOR = 2.374; 95% C.I = 0.927 to 6.077; p = 0.072) 29% of workers were from exposed group and 4% were from unexpose group. Years of exposure to heat (\geq 5 vs b5) were significantly associated with the risk or renal anomalies/calculi.

Sen J, et al.	<i>Study timeline</i> 2015-2017	The study explored the thermal stress level identified by different indices. December and
2019		January were recognized the comfortable months by most of the thermal indices.
Burdwan and Hooghly, West Bengal	Study design Cross sectional (n=1114)	March and April were strong to very strong heat stress, with exception noted for SET*. In comparison to rational indices, the Esk, a
Paddy and potato farmers		thermoregulatory parameter, signified the
Sen and Nag, "Human Susceptibility to Outdoor Hot Environment."	Health outcome Core Body Temperature (CBT), Heart rate, body weight loss due to sweating, Self-reported signs and symptoms	relative change in the evaporative exchange with the increasing environmental warmth. The defined level of Esk at ~200 W/sq·m corresponded to the comfortable temperature range within 19.5 to 22.5 °C for WBGT, PET, and Ta. Beyond this specific range of warmth, a proportionate increase in Esk would result in
	Heat Exposure Ambient temperature (indices) at workplace and individual level	cumulative heat-related symptoms of stress and strain. The study noted a sizeable number of farmworkers manifested moderate to high intensity of heat-related symptoms, with a
	<i>Disaggregated analysis by</i> Gender,	relatively higher percentage in case of females The principal component analysis yielded three principal components of heat-related responses, labeled as (a) physical fatigue and responses, (b) neural stressors, and (c) behavioural effects.
Venugopal. V et al	Study timeline	There was a significant increase in the MN- frequency in exposed workers compared to the
2019 Chennai, Tamil Nadu	Study design Cross sectional (n=120)	unexposed workers (X2 = 47.1; $p < 0.0001$). While exposed workers had higher risk of DNA damage (Adj. OR = 23.3, 95% Cl 8.0–70.8)
Steel Industry Workers	Health outcome Core body temperature, sweating rate, urine	compared to the unexposed workers, among the exposed workers, the odds of DNA damage was much higher for the workers exposed to high-heat levels (Adj. OR = 81.4; 95% Cl 21.3-
Venugopal et al., "Association between Occupational Heat Stress and DNA Damage in Lymphocytes of Workers Exposed to Hot Working Environments in a Steel Industry in Southern India."	specific gravity Disaggregated analysis age, education, alcohol, smoking, years of work	310.1) even after adjusting for confounders. For exposed workers, years of exposure to heat also had a significant association with higher induction of MN (Adj. OR = 29.7; 95% Cl 2.8–315.5). Exposures to chronic heat stress is a significant occupational health risk including damages in sub-cellular level, for workers

Raval. A et al	<i>Study timeline</i> 2015	Wet bulb globe temperature (WBGT) levels ranged from 28.2°C to 36.1°C during the stu period. Traffic police workers who participat in this study were exposed to WBGT levels
2018	Study design	
Ahmedabad, Gujarat	Cross sectional (n=16)	higher than the recommended threshold limit value as per American Conference of
Police officers	Health outcome	Governmental Industrial Hygienists guidelines even beyond the hottest months of the
Raval et al., "Effects of Occupational Heat Exposure	Internal temperature	season. Our findings suggest that airport
on Traffic Police Workers in Ahmedabad, Gujarat."	<i>Disaggregated analysis</i> age, sex, height, weight, as well as work structure, heat impacts on productivity, clothing, heat	measurements by the Indian Meteorological Department may not accurately capture heat exposures among individuals who work in and alongside highdensity traffic junctions. Based on our temperature estimates, traffic police a at risk for heat stress
Das B et al	<i>Study timeline</i> 2012-2013	Cardiac strain in different seasons were measured in terms of work heart rate (WHR),
2018 Hoogly, West Bengal	Study design Cross sectional (n=112)	relative cardiac cost (RCC), net cardiac cost (NCC), cardiovascular stress index (CSI) and other recovery indices among the female bric
Brick workers	Health outcome cardiovascular stress index	field workers. The net cardiac costs of the brick stackers were higher in comparison to
Das, B. et al., "Thermal stress, cardiovascular stress and work productivity among the female brick field workers of West Bengal, India"	Disaggregated analysis age, education, BMI, type of workers, group of workers, shift duration	brick stackers were higher in comparison to brick moulders and carriers. NCC and the F levels were higher among the brick stacker than in other groups of brick field workers. The CSI levels were the maximum in the case of carrying raw mud activities. In thes activities, the brick field workers changed their posture frequently during loading an unloading and walking with mud. The freq change of postures imposed extra load on cardiovascular system.
Lundgren-Kownacki. K et al	Study timeline 2013-2015	Around Chennai, the situation is alarming since occupational heat exposure in the hot
2018		season from March to July is already at the
Chennai, Tamil Nadu	<i>Study design</i> Case study analysis	upper limits of what humans can tolerate before risking serious impairment. The aim of the study was to identify new pathways for
Migrant Brick Kiln Workers	(Summer n=87 and winter n=61)	change and soft solutions by both reframing the problem and expanding the solution space
Lundgren-Kownacki et al.,		being considered in order to improve the
"Climate Change-Induced Heat Risks for Migrant	Health outcome	quality of life for the migrant populations at the brick kilns. Technical solutions evaluated
Populations Working at	Heat stress	include the use of sun-dried mud bricks and
Brick Kilns in India."	Disaggregated analysis Season and work location	other locally appropriate technologies that could mitigate the worsening of climate change-induced heat.

Krishnamurthy. M et al	Study timeline 2014	Some 90% WBGT measurements were higher than recommended threshold limit values
2017	Study design Cross sectional (n=84)	(27.2 - 41.7°C) for heavy and moderate workloads and radiational heat from processe
Steel City, South India Steel Industry Workers	Health outcome Heat stress	were very high in blooming-mill/coke-oven (67.6°C globe temperature). Widespread heat-related health concerns were prevalent
Krishnamurthy et al., "Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India."	Disaggregated analysis plant location, symptoms	among workers, including excessive sweating fatigue, and tiredness reported by 50% workers. Productivity loss was significantly reported high in workers with direct heat exposures compared to those with indirect heat exposures (c2 ¼ 26.1258, degrees of freedom ¼ 1, p < 0.001). Change in urine co was 7.4 times higher among workers exposed to WBGTs above threshold limit values (TLVs)
Dutta.P et al	<i>Study timeline</i> 2013-2014	The survey findings suggest that heatrelated symptoms increased in summer; 59% of all
2015 Gandhinagar, Gujarat Construction workers	Study design Mixed methods (cross sectional n = 219 and Focused group discussions)	reports in summer were positive for symptom (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Nonoccupational stressors compound work stressors; (2) workers were
Dutta et al., "Perceived Heat	Health outcome occupational heat stress	particularly attuned to the impact of heat on their health; (3) workers were aware of
Stress and Health Effects on Construction Workers."	Disaggregated analysis age, sex, education, occupational experience, anthropometry, lifestyle	heatrelated preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employe might be at increased risk of illness or injury.
Sett.M et al	Study timeline 2008-2010	The subjects experience summer for about 5 months with additional heat stress radiating
2014 West Bengal	Study design Cross sectional (n=120)	from the brick kiln. The weekly productivity data show a linear decline in productivity wit increased maximum air temperature above
Brick Workers	Health outcome cardiac problems due to heat	34.98C. The cardiac parameters (peak heart rate (HRp), net cardiac cost (NCC), relative cardiac cost (RCC), and recovery heart rates)
Sett and Sahu, "Effects of Occupational Heat Exposure on Female Brick Workers in West Bengal, India."	Disaggregated analysis age, height, weight, experience, nature of brick worker (brick carriers or brick moulders)	were significantly higher on hotter days (W Bulb Globe Temperature (WBGTout) index: 26.98C to 30.748C) than on cooler days (WBGTout index: 16.128C to 19.378C) for t brick molders; however, this is not the case the brick carriers. As the brick carriers adap hotter days by decreasing their walking spe their productivity decreases

Sahu. S et al	<i>Study timeline</i> 2011	Hourly heat exposure in rice fields in West Bengal were measured and perceived health
2013 West Bengal	Study design Cross sectional (n=124)	problems were recorded via interviews of 124 rice harvesters. In a sub-group (n = 48) heart rate was recorded every minute in a standard work situation. Work productivity was recorded as hourly rice bundle collection output. The hourly heat levels (WBGT = Wet
Rice Harvesters	Health outcome Cardiac stress Perceived health problems	
Sahu, Sett, and Kjellstrom, "Heat Exposure, Cardiovascular Stress and Work Productivity in Rice Harvesters in India."	Disaggregated analysis age, height, weight	Bulb Globe Temperature) were 26-32°C (at air temperatures of 30-38°C), exceeding international standards. Most workers reported exhaustion and pain during work on hot days. Heart rate recovered quickly at low heat, but more slowly at high heat, indicating cardiovascular strain. The hourly number of rice bundles collected was significantly reduced at WBGT>26°C (approximately 5% per°C of increased WBGT).

Appendix A-6:

Heat morbidity studies among urban and rural households

Author, year, Study location	Study details	Findings
Swain. S et al	Study timeline 2017	Nearly, 49% of the study participants were female and the mean age was 38.36
2019 Bubhaneshwar and Cuttack, Odisha	Study design Cross sectional (n=1099) (Stratified cluster random sampling)	years (95% confidence interval (CI): 37.33–39.39 years). A significant difference of living environment was seen across the groups. More than two-thirds of the study participants at least once had heat illness. In
Urban households- slum and non-slum general population Swain et al., "Vulnerability and	Health outcome Self-reported signs and symptoms,	the non-slum population, males (adjusted odds ratio (aOR): 3.56; 95% CI: 2.39–5.29), persons under medication (aOR: 3.09; 95% CI: 1.15–8.29), and chronic conditions
Adaptation to Extreme Heat in Odisha, India."India during the summer. Methods: A cross- sectional study included 766 households (HHs	Disaggregated analysis by age, sex, caste, religion, housing characteristics (roofs, electricity, power cut, water supply)	had higher association with heat illness. Whereas, in the slum population, having a kitchen outside the home (aOR: 1.63; 95% Cl: 1.02–3.96) and persons with chronic conditions were positively associated with heat illness. Use of cooling practices in slum areas reduced the risk of heat illness by 60%.
Pradyumna. A et al^	<i>Study timeline</i> 2016	Exposure to heat in various circumstances, both outdoors and indoors were reported.
2018 Jalna, Maharashtra	Study design Cross sectional (n=1224)	The major HRS were found to be headache, heavy sweating and fatigue, which were mild or moderate in nature. Age, gender,
Rural households- general population	Health outcome Heat stress	wealth and pre-existing health conditions were significantly associated with occurrence of HRS. Regarding exposure,
Pradyumna et al., "Heat Stress – Vulnerability, Health Impacts, and Coping Strategies in Rural Communities in the Semi-Arid Region of Maharashtra, India."	<i>Disaggregated analysis</i> age, sex, wealth ranking, caste, education, occupation	working outdoors during mid-day, roofing material and indoor ventilation were significantly associated with occurrence of HRS.
Tasgaonkar. P et al^	<i>Study timeline</i> 2016	
2018 Yavatmal, Maharashtra	Study design Cross sectional (n=326)	
Rural households- general population	Health outcome Heat stress	
Tasgaonkar et al., "Vulnerability to Heat Stress: A Case Study of Yavatmal, Maharashtra, India."	<i>Disaggregated analysis</i> age, sex, education, type of roof	

Tran. K et al	<i>Study timeline</i> 2011	Associations between heat-related morbidity and vulnerability factors were identified using multivariate logistic regression with
Ahmedabad, Gujarat	Study design Cross sectional (n=1650)	generalized estimating equations to account for clustering effects. Age, preexisting medical conditions, work location, and
Slum dwellers	(randomized, cluster- sampled survey)	access to health information and resources were associated with self-reported heat
Tran et al., "A Cross-Sectional, Randomized Cluster Sample Survey of Household Vulnerability to Extreme Heat among Slum Dwellers in	Health outcome Heat stress	illness.
Ahmedabad, India."	<i>Disaggregated analysis</i> age, sex, education, occupation, work location	

^ Report

Appendix A-7:

Heat morbidity studies among hospitalized patients

Author, year, Study location	Study details	Findings
Kalaiselvan et al 2015	Study timeline 2012	The common presenting symptoms (to Intensive Care Unit) were fever with neurological impairment (100%) and gastrointestinal symptoms (30%). Major organ systems involvement include neurological (100%), renal (57%), hepatic (34%) and coagulation abnormalities (26%). Most common metabolic abnormality noted was hyponatraemia (73%). Magnetic resonance imaging findings suggestive of heat stroke were seen in 5 of 26 patients. Mortality rate was 34%. 8 of 17 survivors had residual neurological impairment. imaging findings suggestive of heat stroke were seen in 5 of 26 patients. Mortality rate was 34%. 8 of 17 survivors had residual neurological impairment.
Chennai, Tamil Nadu	Study design retrospective case series	
Kalaiselvan, Renuka, and Arunkumar, "A Retrospective Study of Clinical Profile and Outcomes of Critically III Patients with Heat-Related Illness."	Health outcome Heat illness	
	<i>Disaggregated</i> analysis age, sex, comorbidity, medications	
Kiranmayi, Patnala.	Study timeline 2011-2012	Most of the CKD (48.4%) cases are registered relatively high between
2014 Nellimarla, Andhra Pradesh	Study design Case control study (n)= 198	the months of March and May. In the present study, creatinine clearance values using CG, MDRD and MCQE in CKD patients are significantly lowered
Kiranmayi, "Climate Change and ChronicHealth outcomewhen compareKidney Disease."chronic kidney0.001). Most of are agricultura	when compared with control (p < 0.001). Most of the people registered are agricultural workers (24%),	
	Disaggregated analysis age, sex, occupation, months, height, weight	construction workers or laborers (23%) and industrial labor workers (18%) who belong to low income group. In the present investigation, it was observed that there was a progressive decline in GFR as the age advanced, these are more at risk of developing renal disease when exposed to heat stress.

Appendix B-1:

Population based vulnerability and adaptation assessments

Author, year, Study location	Study details	Findings
Gulrez Azhar et al,	Study design Developing district level	Of the total 640 districts, 10 and 97 districts were in the very
2017	composite Heat Vulnerability Index (HVI) for India.	high and high risk categories (> 2SD and 2-1SD HVI) respectively.
India Azhar et al., "Heat Wave Vulnerability Mapping for India."	Data Sources Demographic, socioeconomic, and environmental vulnerability factors and combined district level data from several sources including the most recent census, health reports, and satellite remote sensing data	Mapping showed that the districts with higher heat vulnerability are located in the central parts of the country. On examination, these are less urbanized and have low rates of literacy, access to water and sanitation, and presence of household amenities.

Appendix B-2:

Early warning systems

Author, year, Study location	Study details	Findings
Golechha, M., et al,	Study design Trend analysis, percentile-based	There was a significant association between all-cause mortality and
2021	method was used to determine maximum temperature thresholds	extreme heat events and it was more profound when temperatures were
City of Rajkot and Nagpur	Study timeline	above 40.1 °C, but V-shaped relationship of mortality-
Golechha, Shah, and Mavalankar, "Threshold Determination and	Primary outcome All-cause mortality	temperature was noted only for Nagpur city. The dose-response relationship between maximum
Temperature Trends Analysis of Indian Cities for Effective Implementation of an Early Warning System."	Source of outcome data Birth and Death Registration Department of municipal corporation	temperatures and deaths alert thresholds to activate heat health response for red alert set at 46 °C and 44 °C for Nagpur and Rajkot city respectively. This study suggests that determining local thresholds is important for developing and
chinate randon	Climate variable Daily maximum temperature	
	<i>Source of climate data</i> Indian Metrological Department (IMD)	implementing scientific early warning systems to prevent heat- related illnesses.

Appendix B-3:

Studies on effectiveness of heat action plans or their components

Author, year, Study location	Study details	Findings
Hess, J. et al,	Study design Evaluation (pre-post design)	The maximum pre-HAP RR was 2.34 (95% Cl 1.98–2.76) at 47°C (lag 0), and the maximum postHAP RR was 1.25 (1.02–1.53) estimated at 47°C (lag 0).
2018	<i>Study timeline</i> 2007-10, 2014-15	
Ahmedabad, Gujarat	Primary outcome All-cause mortality	Post-to-pre-HAP nonlagged mortality IRR for Tmax over 40°C was 0.95 (0.73–1.22) and 0.73 (0.29–1.81) for Tmax over 45°C.
Hess et al., "Building Resilience to Climate Change."	Source of outcome data Birth and Death Registration Department of municipal corporation	An estimated 1,190 (95%Cl 162–2,218) average annualized deaths were avoided in the post-HAP period
	<i>Climate variable</i> Daily maximum temperature	
	Source of climate data Meteorological Aviation Report (METAR) system	
	Intervention Heat action plan implemented in the city of Ahmedabad during 2014-15	
	Disaggregated analysis None	
Das S. et al, 2012 Odisha	Study design Evaluation (quasi- experimental, difference in difference regression analysis)	The results suggest that heat wave awareness campaigns can significantly reduce heat stroke deaths during heat waves in a developing country context. The study also looked at interaction of
Das and Smith, "Awareness	<i>Study timeline</i> 1998 to 2010	the grassroots program impact with the concurrent media program impact.
as an adaptation strategy for reducing mortality from heat waves. "	Source of outcome data Odisha State Disaster Mitigation Authority and Senior Relief Commissioner's office.	 Information may first be received via the newspaper (conveyed verbally in the case when household members are illiterate), or seen on television at a village center, and then may be reinforced by visits of grassroots program officers. Similarly,
	<i>Climate variable</i> None	people may be reminded of the in-depth information they received from the village
	Intervention Grassroots awareness campaign on "dos and don'ts during heat wave conditions through the Disaster Risk Management program	visits when hearing a brief message on the radio. Thus, the two programs may be mutually reinforcing. For some individuals or communities, mass media may carry more credibility and the grassroots campaign serves as a reminder; in other communities the reverse may be true. We find a significant negative coefficient, indicating that the two approaches may be complementary as awareness strategies in helping to avert mortality.

References

- Azhar, Gulrez, Shubhayu Saha, Partha Ganguly, Dileep Mavalankar, and Jaime Madrigano. "Heat Wave Vulnerability Mapping for India." *International Journal of Environmental Research and Public Health* 14, no. 4 (March 30, 2017): 357. https://doi.org/10.3390/ijerph14040357.
- Azhar, Gulrez Shah, Dileep Mavalankar, Amruta Nori-Sarma, Ajit Rajiva, Priya Dutta, Anjali Jaiswal, Perry Sheffield, Kim Knowlton, and Jeremy J. Hess. "Heat-Related Mortality in India: Excess All-Cause Mortality Associated with the 2010 Ahmedabad Heat Wave." *PLOS ONE* 9, no. 3 (March 14, 2014): e91831. https:// doi.org/10.1371/journal.pone.0091831.
- Climate Impact Lab. "Climate Change and Heat-Induced Mortality in India," 2020. https://impactlab.org/wpcontent/uploads/2019/10/IndiaMortality_webv2.pdf.
- Das, Banibrata. "THERMAL STRESS, CARDIOVASCULAR STRESS AND WORK PRODUCTIVITY AMONG THE FEMALE BRICK FIELD WORKERS OF WEST BENGAL, INDIA." Human Ergology Society, 2018. https://doi. org/10.11183/jhe.47.1_1.
- Das, Saudamini, and Stephen C. Smith. "AWARENESS AS AN ADAPTATION STRATEGY FOR REDUCING MORTALITY FROM HEAT WAVES: EVIDENCE FROM A DISASTER RISK MANAGEMENT PROGRAM IN INDIA." *Climate Change Economics* 03, no. 02 (May 2012): 1250010. https://doi.org/10.1142/ S2010007812500108.
- Desai, Vikas K, Shailesh Wagle, Suresh Kumar Rathi, Urvi Patel, Hemant S Desai, and Kaplesh Khatri. "Effect of Ambient Heat on All-Cause Mortality in the Coastal City of Surat, India." *CURRENT SCIENCE* 109, no. 9 (2015): 7.
- Dholakia, Hem H, Vimal Mishra, and Amit Garg. "Predicted Increases in Heat Related Mortality under Climate Change in Urban India," no. 2015 (2015): 50.
- Dutta, Ambarish, Shreeporna Bhattacharya, Kavitha Ak, Sanghamitra Pati, Subhashisa Swain, and Lipika Nanda. "At Which Temperature Do the Deleterious Effects of Ambient Heat 'Kick-in' to Affect All-Cause Mortality? An Exploration of This Threshold from an Eastern Indian City." *International Journal of Environmental Health Research* 30, no. 2 (March 3, 2020): 187–97. https://doi.org/10.1080/09603123.20 19.1587389.
- Dutta, Priya, Ajit Rajiva, Dileep Andhare, GulrezShah Azhar, Abhiyant Tiwari, Perry Sheffield, and Ahmedabad Heat and Climate Study Group. "Perceived Heat Stress and Health Effects on Construction Workers." *Indian Journal of Occupational and Environmental Medicine* 19, no. 3 (2015): 151. https://doi. org/10.4103/0019-5278.174002.
- Dutta, Priya, Lm Sathish, Dileep Mavankar, Partha Sarthi Ganguly, and Sujata Saunik. "Extreme Heat Kills Even in Very Hot Cities: Evidence from Nagpur, India." *The International Journal of Occupational and Environmental Medicine* 11, no. 4 (October 26, 2020): 188–95. https://doi.org/10.34172/ijoem.2020.1991.
- Fu, Sze Hang, Antonio Gasparrini, Peter S. Rodriguez, and Prabhat Jha. "Mortality Attributable to Hot and Cold Ambient Temperatures in India: A Nationally Representative Case-Crossover Study." Edited by Madeleine Thomson. *PLOS Medicine* 15, no. 7 (July 24, 2018): e1002619. https://doi.org/10.1371/journal. pmed.1002619.

- Golechha, Mahaveer, Priyanka Shah, and Dileep Mavalankar. "Threshold Determination and Temperature Trends Analysis of Indian Cities for Effective Implementation of an Early Warning System." *Urban Climate* 39 (September 2021): 100934. https://doi.org/10.1016/j.uclim.2021.100934.
- Hess, Jeremy J., Sathish Lm, Kim Knowlton, Shubhayu Saha, Priya Dutta, Parthasarathi Ganguly, Abhiyant Tiwari, et al. "Building Resilience to Climate Change: Pilot Evaluation of the Impact of India's First Heat Action Plan on All-Cause Mortality." *Journal of Environmental and Public Health* 2018 (November 1, 2018): 1–8. https://doi.org/10.1155/2018/7973519.
- Ingole, Vijendra, Sanjay Juvekar, Veena Muralidharan, Somnath Sambhudas, and Joacim Rocklöv. "The Short-Term Association of Temperature and Rainfall with Mortality in Vadu Health and Demographic Surveillance System: A Population Level Time Series Analysis." *Global Health Action* 5, no. 1 (December 2012): 19118. https://doi.org/10.3402/gha.v5i0.19118.
- Ingole, Vijendra, Sari Kovats, Barbara Schumann, Shakoor Hajat, Joacim Rocklöv, Sanjay Juvekar, and Ben Armstrong. "Socioenvironmental Factors Associated with Heat and Cold-Related Mortality in Vadu HDSS, Western India: A Population-Based Case-Crossover Study." *International Journal of Biometeorology* 61, no. 10 (October 2017): 1797–1804. https://doi.org/10.1007/s00484-017-1363-8.
- Ingole, Vijendra, Joacim Rocklöv, Sanjay Juvekar, and Barbara Schumann. "Impact of Heat and Cold on Total and Cause-Specific Mortality in Vadu HDSS—A Rural Setting in Western India." *International Journal of Environmental Research and Public Health* 12, no. 12 (December 2, 2015): 15298–308. https://doi. org/10.3390/ijerph121214980.
- Kalaiselvan, M. S., M. K. Renuka, and A. S. Arunkumar. "A Retrospective Study of Clinical Profile and Outcomes of Critically III Patients with Heat-Related Illness." *Indian Journal of Anaesthesia* 59, no. 11 (November 2015): 715–20. https://doi.org/10.4103/0019-5049.170030.
- Kiranmayi, Patnala. "Climate Change and Chronic Kidney Disease." *Asian Journal of Pharmaceutical Research* 7 (February 7, 2014): 53–57.
- Krishnamurthy, Manikandan, Paramesh Ramalingam, Kumaravel Perumal, Latha Perumal Kamalakannan, Jeremiah Chinnadurai, Rekha Shanmugam, Krishnan Srinivasan, and Vidhya Venugopal. "Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India." Safety and Health at Work 8, no. 1 (March 2017): 99–104. https://doi.org/10.1016/j.shaw.2016.08.005.
- Kumar, Arvind, and D.P. Singh. "Heat Stroke-Related Deaths in India: An Analysis of Natural Causes of Deaths, Associated with the Regional Heatwave." *Journal of Thermal Biology* 95 (January 2021): 102792. https:// doi.org/10.1016/j.jtherbio.2020.102792.
- Lundgren-Kownacki, Karin, Siri M. Kjellberg, Pernille Gooch, Marwa Dabaieh, Latha Anandh, and Vidhya Venugopal. "Climate Change-Induced Heat Risks for Migrant Populations Working at Brick Kilns in India: A Transdisciplinary Approach." *International Journal of Biometeorology* 62, no. 3 (March 2018): 347–58. https://doi.org/10.1007/s00484-017-1476-0.
- Mahapatra, Bidhubhusan, Monika Walia, and Niranjan Saggurti. "Extreme Weather Events Induced Deaths in India 2001–2014: Trends and Differentials by Region, Sex and Age Group." *Weather and Climate Extremes* 21 (September 2018): 110–16. https://doi.org/10.1016/j.wace.2018.08.001.
- Mallik, Preeti, Pankaj Bhardwaj, and Omvir Singh. "Heat Wave Fatalities over India: 1978–2014." *CURRENT SCIENCE*, 120, no. 10 (May 25, 2021). https://doi.org/10.18520/cs/v120/i10/1593-1599.
- Mazdiyasni, Omid, Amir AghaKouchak, Steven J. Davis, Shahrbanou Madadgar, Ali Mehran, Elisa Ragno, Mojtaba Sadegh, et al. "Increasing Probability of Mortality during Indian Heat Waves." *Science Advances* 3, no. 6 (June 16, 2017): e1700066. https://doi.org/10.1126/sciadv.1700066.

- Murari, Kamal Kumar, Subimal Ghosh, Anand Patwardhan, Edoardo Daly, and Kaustubh Salvi. "Intensification of Future Severe Heat Waves in India and Their Effect on Heat Stress and Mortality." *Regional Environmental Change* 15, no. 4 (April 2015): 569–79. https://doi.org/10.1007/s10113-014-0660-6.
- Nori-Sarma, Amruta, G. Brooke Anderson, Ajit Rajiva, Gulrez ShahAzhar, Prakash Gupta, Mangesh S. Pednekar, Ji-Young Son, Roger D. Peng, and Michelle L. Bell. "The Impact of Heat Waves on Mortality in Northwest India." *Environmental Research* 176 (September 2019): 108546. https://doi.org/10.1016/j. envres.2019.108546.
- Nori-Sarma, Amruta, Tarik Benmarhnia, Ajit Rajiva, Gulrez Shah Azhar, Prakash Gupta, Mangesh S. Pednekar, and Michelle L. Bell. "Advancing Our Understanding of Heat Wave Criteria and Associated Health Impacts to Improve Heat Wave Alerts in Developing Country Settings." *International Journal of Environmental Research and Public Health* 16, no. 12 (June 2019): 2089. https://doi.org/10.3390/ ijerph16122089.
- Pradyumna, Adithya, Ramkumar Bendapudi, Dipak Zade, and Marcella D'Souza. "Heat Stress Vulnerability, Health Impacts, and Coping Strategies in Rural Communities in the Semi-Arid Region of Maharashtra, India," 2018, 37.
- Rathi, Sk, Vk Desai, P Jariwala, H Desai, A Naik, and A Joseph. "Summer Temperature and Spatial Variability of All-Cause Mortality in Surat City, India." *Indian Journal of Community Medicine* 42, no. 2 (2017): 111. https://doi.org/10.4103/0970-0218.205216.
- Rathi, Suresh K., P. R. Sodani, and Suresh Joshi. "Summer Temperature and All-Cause Mortality from 2006 to 2015 for Smart City Jaipur, India." *Journal of Health Management* 23, no. 2 (June 2021): 294–301. https://doi.org/10.1177/09720634211011693.
- Raval, Amee, Priya Dutta, Abhiyant Tiwari, P S Ganguly, L M Sathish, Dileep Mavalankar, and Jeremy Hess. "Effects of Occupational Heat Exposure on Traffic Police Workers in Ahmedabad, Gujarat." *Indian Journal* of Occupational and Environmental Medicine 22, no. 3 (2018): 8.
- Ray, Kamaljit, R.K. Giri, S.S. Ray, A.P. Dimri, and M. Rajeevan. "An Assessment of Long-Term Changes in Mortalities Due to Extreme Weather Events in India: A Study of 50 Years' Data, 1970–2019." *Weather and Climate Extremes* 32 (June 2021): 100315. https://doi.org/10.1016/j.wace.2021.100315.
- Sahu, Subhashis, Moumita Sett, and Tord Kjellstrom. "Heat Exposure, Cardiovascular Stress and Work Productivity in Rice Harvesters in India: Implications for a Climate Change Future." *Industrial Health* 51, no. 4 (2013): 424–31. https://doi.org/10.2486/indhealth.2013-0006.
- Sen, Jayashree, and Pranab Kumar Nag. "Human Susceptibility to Outdoor Hot Environment." *Science of The Total Environment* 649 (February 2019): 866–75. https://doi.org/10.1016/j.scitotenv.2018.08.325.
- Sett, Moumita, and Subhashis Sahu. "Effects of Occupational Heat Exposure on Female Brick Workers in West Bengal, India." *Global Health Action* 7 (2014): 21923. https://doi.org/10.3402/gha.v7.21923.
- Singh, Nidhi, Alaa Mhawish, Santu Ghosh, Tirthankar Banerjee, and R.K. Mall. "Attributing Mortality from Temperature Extremes: A Time Series Analysis in Varanasi, India." *Science of The Total Environment* 665 (May 2019): 453–64. https://doi.org/10.1016/j.scitotenv.2019.02.074.
- Swain, Subhashisa, Shreeporna Bhattacharya, Ambarish Dutta, Sanghamitra Pati, and Lipika Nanda.
 "Vulnerability and Adaptation to Extreme Heat in Odisha, India: A Community Based Comparative Study." *International Journal of Environmental Research and Public Health* 16, no. 24 (December 12, 2019): 5065. https://doi.org/10.3390/ijerph16245065.

- Tasgaonkar, Premsagar, Marcella D'Souza, Ramkumar Bendapudi, and Cor Jacobs. "Vulnerability to Heat Stress: A Case Study of Yavatmal, Maharashtra, India," September 2018, 8.
- Tran, Kathy V., Gulrez S. Azhar, Rajesh Nair, Kim Knowlton, Anjali Jaiswal, Perry Sheffield, Dileep Mavalankar, and Jeremy Hess. "A Cross-Sectional, Randomized Cluster Sample Survey of Household Vulnerability to Extreme Heat among Slum Dwellers in Ahmedabad, India." *International Journal of Environmental Research and Public Health* 10, no. 6 (June 2013): 2515–43. https://doi.org/10.3390/ijerph10062515.
- Venugopal, Vidhya, Manikandan Krishnamoorthy, Vettriselvi Venkatesan, Vijayalakshmi Jaganathan, Rekha Shanmugam, Karthik Kanagaraj, and Solomon F. D. Paul. "Association between Occupational Heat Stress and DNA Damage in Lymphocytes of Workers Exposed to Hot Working Environments in a Steel Industry in Southern India." *Temperature* 6, no. 4 (October 2, 2019): 346–59. https://doi.org/10.1080/23328940.2 019.1632144.
- Venugopal, Vidhya, P. K. Latha, Rekha Shanmugam, Manikandan Krishnamoorthy, R. Omprashanth, Robin Lennqvist, and Priscilla Johnson. "Epidemiological Evidence from South Indian Working Population—the Heat Exposures and Health Linkage." *Journal of Exposure Science & Environmental Epidemiology* 31, no. 1 (January 2021): 177–86. https://doi.org/10.1038/s41370-020-00261-w.
- Venugopal, Vidhya, P.K. Latha, Rekha Shanmugam, Manikandan Krishnamoorthy, Krishnan Srinivasan, Kumaravel Perumal, and Jeremiah S. Chinnadurai. "Risk of Kidney Stone among Workers Exposed to High Occupational Heat Stress - A Case Study from Southern Indian Steel Industry." Science of The Total Environment 722 (June 2020): 137619. https://doi.org/10.1016/j.scitotenv.2020.137619.
- Wei, Yaguang, Abhiyant Suresh Tiwari, Longxiang Li, Bhavin Solanki, Jayanta Sarkar, Dileep Mavalankar, and Joel Schwartz. "Assessing Mortality Risk Attributable to High Ambient Temperatures in Ahmedabad, 1987 to 2017." *Environmental Research* 198 (July 2021): 111232. https://doi.org/10.1016/j. envres.2021.111232.