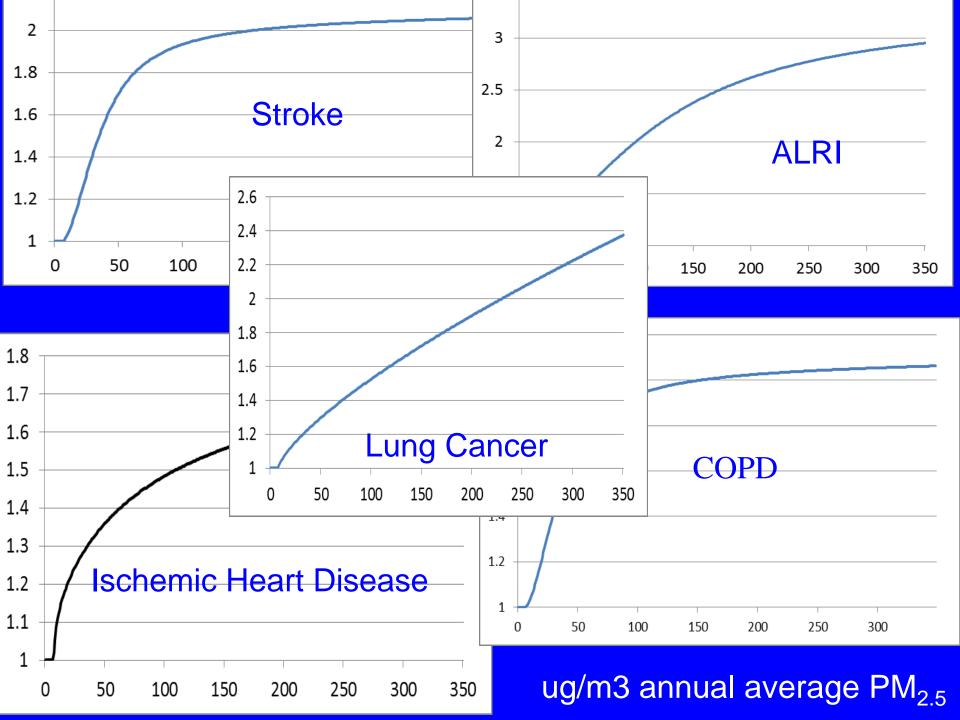
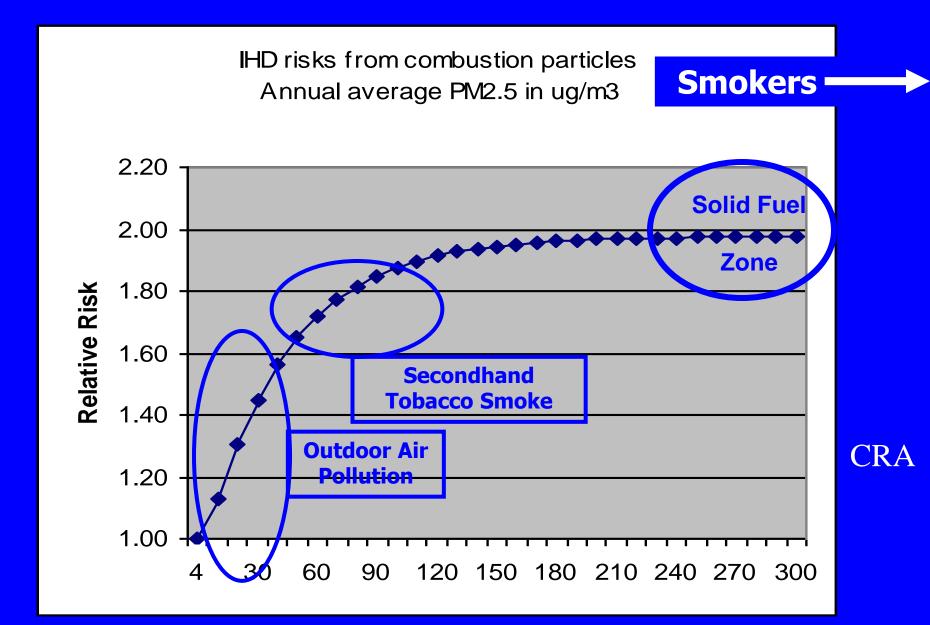
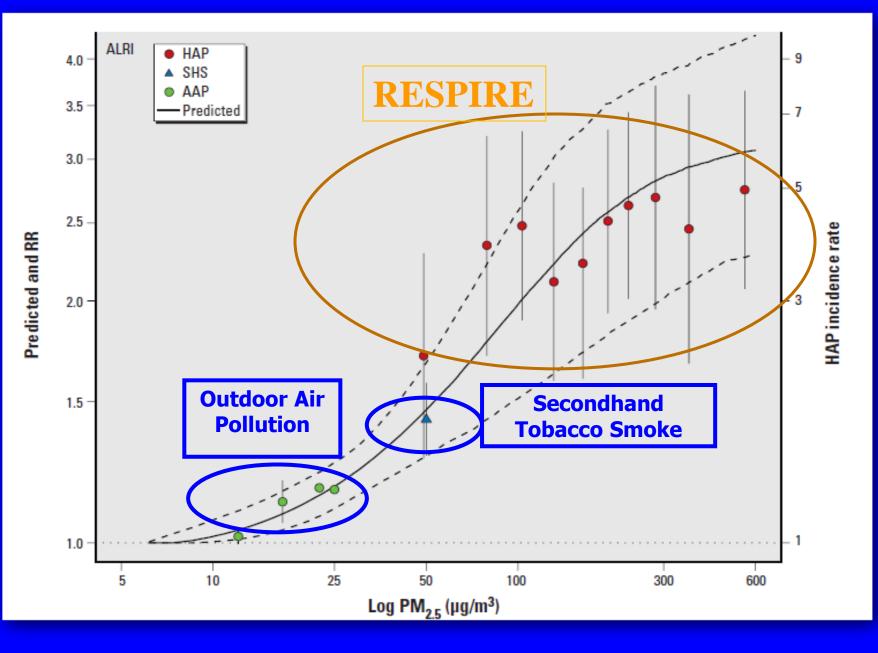

Household air pollution and health: going up and going down

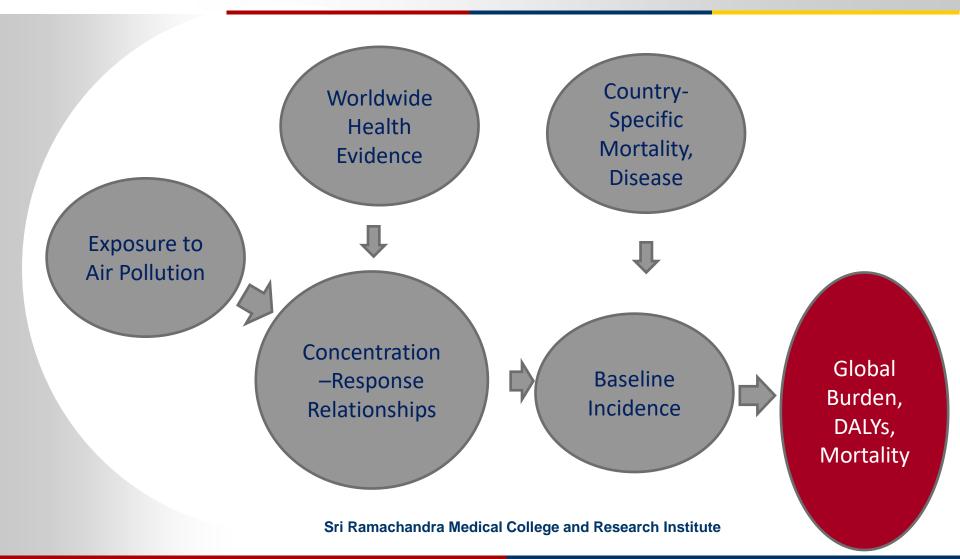

> Kirk R. Smith, Professor of Global Environmental Health, UC Berkeley

Director, Collaborative Clean Air Policy Centre New Delhi Avoidable risk is not always the same as attributable risk





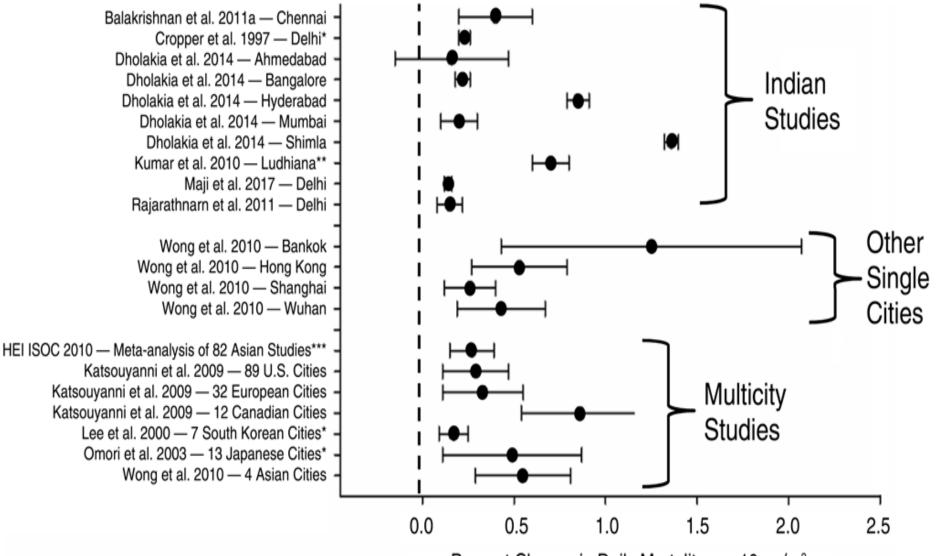
Integrated Exposure-Response: Outdoor Air, SHS, and Smoking



Burnett et al., EHP. 2014, Integrated Exposure-Response Functions

GBD/CRA is our best estimate of what disease comes today from past exposures

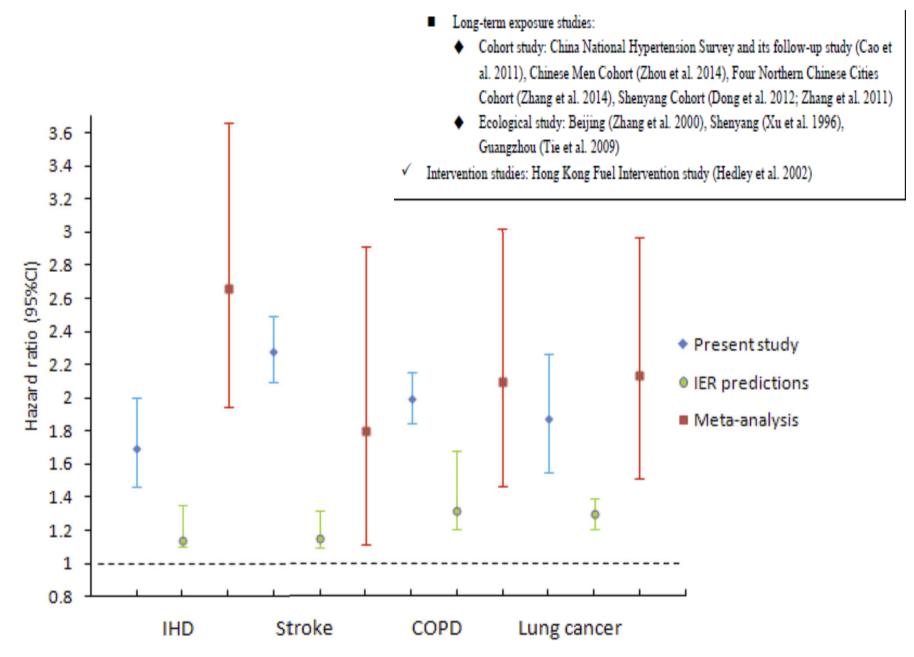
- Is not necessarily the same as what will happen if going forward with controls
- Partly because of difficulties of estimating the future in specific populations
 - Age structure, background disease conditions, competing risks, etc.


Estimating the Burden of Disease due to Air Pollution – what if exposures had not occurred in the past

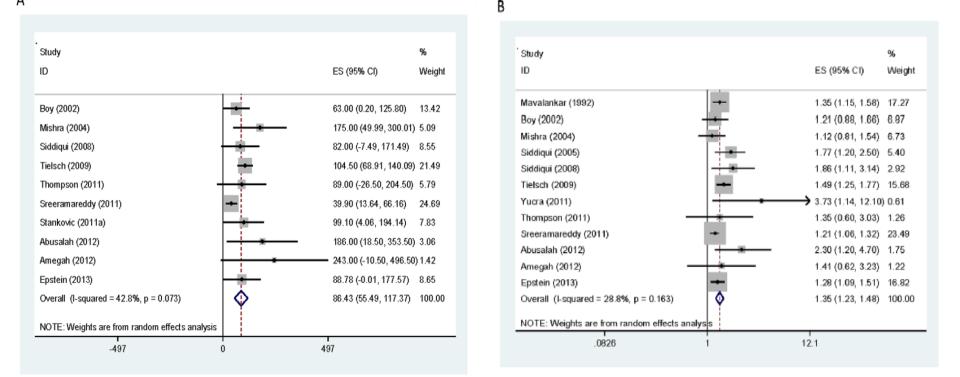
First difficulty discussed here

 Are health impacts different among Indians/Asians compared to the populations where the studies have been done?

Comparability of Effects Estimates from AAP studies from the region (Short-term effects : GBD related health endpoints)



Percent Change in Daily Mortality per 10 µg/m³


Comparability of Effects Estimates from HAP studies from the region (GBD health end-points)

Health Outcome		India studies	Reported ORs	Meta-analysis estimate	
	НАР	Behera et al (1991)	3.04 (2.15-4.31)	Kurmi et al Hu et al PO et al Smith et al 2014	2.80 (1.85–4.0)
CORD		Qureshi et al (1994)	2.10 (1.50 to 2.94)		2.44(1.9-3.33)
COPD		Dutt et al (1996)	2.8(0.61-12.85)		2.4(1.47-3.93) 1.93(1.61-2.92)
		Malik et al(1985)	2.95(1.6-5.44)		,
		Pandey et al(1984)	4.05(3.23- 4.16)		
		Jindal et al(2006)	1(0.79-1.27)		
Child ALRI	НАР	Pandey et al (1989)	2.45(1.43-4.19)	Dherani et al(2008) Smith et al(2014)	1.78 (1.45–2.18)
		Mishra et al (2004)	2.2(1.16-4.18)		
	HAF	Kumar et al (2004)	3.67(1.42-10.57)		
		Mishra et al (2005)	1.58 (1.28–1.95)		
Lung Cancer		Gupta et al (2000)	1.52 (0.33–6.98)	Smith et al (2014)	1.18(1.03-1.35)
(Biomass)	НАР	Sapkota et al(2008)	3.76 (1.64–8.63)		
		Behera et al (2005)	3.59(1.08-11.67)		
		Mohan et al (1989)	1.61 (1.02–2.50)	Smith et al (2014)	2.46(1.74-3.5)
Cataracts	НАР	Badrinath(1996)	4.91(2.82-8.55)		
		Sreenivas(1999)	1.82(1.13-2.93)		
		Saha(2005)	2.4(0.9-6.38)		
		Zodpey et al (1999)	2.37 (1.44–4.13)		
Lung Cancer(Coal)	НАР	Not available		Hosgood et al (2011) Bruce (2015)	2.15(1.61-2.89) 1.17 (1.01 to 1.37)

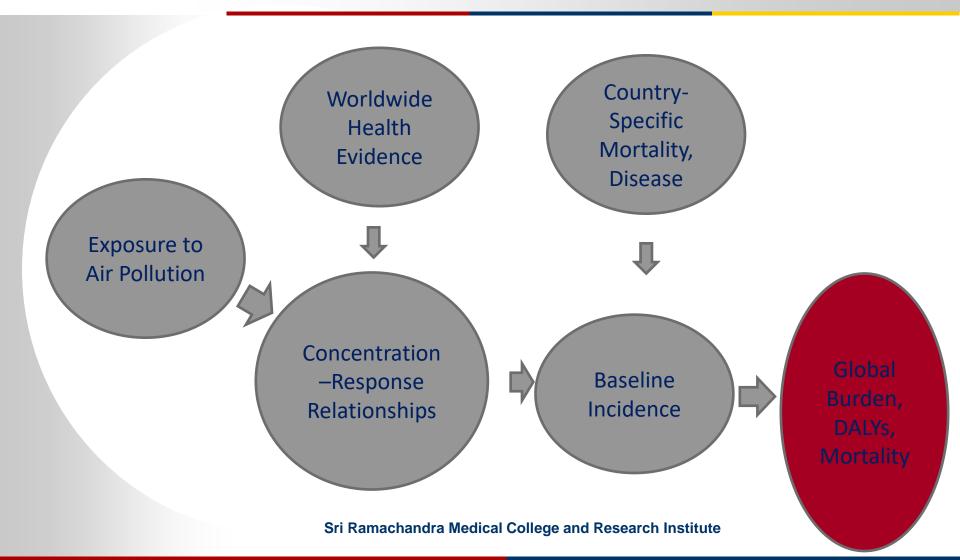
Comparability of Effects Estimates from Ambient studies from the region

HAP Studies on health end points not currently included in GBD assessments : Birthweight/Low Birthweight

Exposure to HAP associated with 86 g (95%CI: 55.0, 117) reduction in birthweight and a 35% increased odds of low birthweight (OR: 1.35, 95%CI: 1.15, 1.5) (*Amegah et al 2014*)

Results from the TAPHE cohort in India estimate a 72 gm change associated with biomass use when compared to LPG (*Balakrishnan et al 2018*)

Ambient Studies on health end points not currently included in GBD assessments : Birthweight/Low Birthweight


Bell, 2007	HEH	-66.8 [-77.7 , -55.9]	Madsen, 2010		0.787 [0.409 , 1.513]
Parker, 2005	⊢∎→	-54.3[-90.2, -18.5]	Brauer, 2008	┝━━━╋┼━━┥	0.817 [0.410 , 1.629]
Savitz, 2014	H H -1	-48.4 [-62.3 , -34.5]	Brown, 2015	H	0.963 [0.882 , 1.050]
Hyder, 2014		-25.7 [-32.4 , -19.1]	Morello-Frosch, 2010		1.000 [0.990 , 1.010]
Basu, 2004	-	-20.0 [-34.3 , -5.7]	Parker, 2008	H	1.000 [0.909 , 1.100]
			Kumar, 2012	1	1.012[0.918, 1.116]
Gray, 2014		-15.7 [-16.6 , -14.7]	Basu, 2014		1.013 [0.963 , 1.067]
Pedersen, 2013	H B -1	-14.0[-32.0, 4.0]	Laurent, 2014		1.035 [1.016 , 1.054]
Kloog, 2012	-	-13.8[-21.5, -6.1]	Hyder, 2014	HEH	1.042 [0.923 , 1.177]
Morello-Frosch, 2010	-	-11.4 [-13.5 , -9.3]	Wilhelm, 2012	H H -1	1.042 [0.820 , 1.326]
Kumar, 2012		-11.1[-18.8, -3.3]	Gray, 2014	=1	1.090 [1.002 , 1.186]
Basu, 2014		-9.3[-13.2, -5.3]	Fleischer, 2014	H 1	1.106 [1.001 , 1.222]
Bell, 2010	HEH	-8.3[-22.2, 5.6]	Ebisu, 2012	H H H	1.123 [0.973 , 1.297]
Hannam et al. 2014	H	3.9[-9.4, 17.3]	Bell, 2010	H	1.207 [0.942 , 1.547]
	T		Ha, 2014	₩ ₩ ₩₩	1.264 [0.948 , 1.685]
Parker, 2008		4.6[-6.1, 15.3]	Bell, 2007	HEH	1.270 [1.104 , 1.461]
Gehring, 2011	F	6.5[-44.1, 57.2]	Harris, 2014	•	1.344 [1.256 , 1.438]
Geer, 2012	⊢∎⊣	24.9[5.7, 44.1]	Pedersen, 2013	⊢∎⊸≀	1.392 [1.096 , 1.769]
Madsen, 2010	Ⅰ i	32.1 [-77.9 , 142.1]	Dadvand, 2014	₩	1.659 [0.952 , 2.893]
Summary β (95%CI)	I	-15.9 [-26.8 , -5.0]	Summary OR (95%CI) Heterogeneity: I-square=92.6%	I- Q 1	1.090 [1.032 , 1.150]
Heterogeneity: I-square=98.					_
	-100.0 0.0 100.0		0.3	68 1.000 2.718	

Exposure to AAP associated with 15.9 g (95%CI: 5.0, 26.8) reduction in birthweight and a 9% increased odds of low birthweight (OR: 1.09, 95%CI: 1.03, 1.15) (Sun et al 2015)

Results from the TAPHE cohort in India estimate a, 4 g (95% CI:1.08 g, 6.76 g) decrease in birthweight and 2% increase in prevalence of low birthweight [odds ratio (OR) = 1.02; 95% CI:1.005,1.041 per 10-µg/m3 increase in pregnancy period PM2.5 exposures (Balakrishnan 2018).

ETS associated with a 40 gm reduction and smoking with a ~200gm reduction in birthweight among pregnant women

Estimating the Burden of Disease due to Air Pollution – what if exposures had not occurred in the past

Second difficulty discussed here

 IERs have been created without direct studies of heart disease and HAP

Heart Disease and Combustion Particle Doses

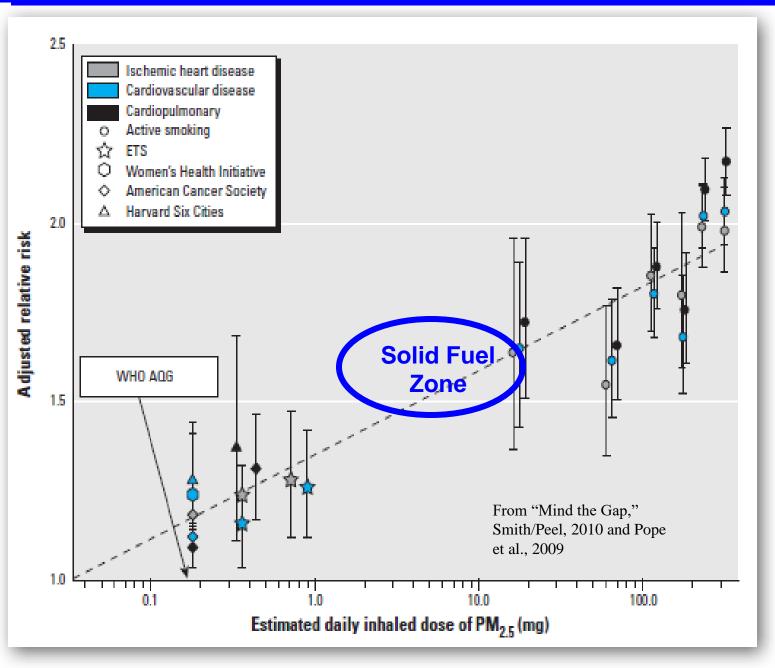


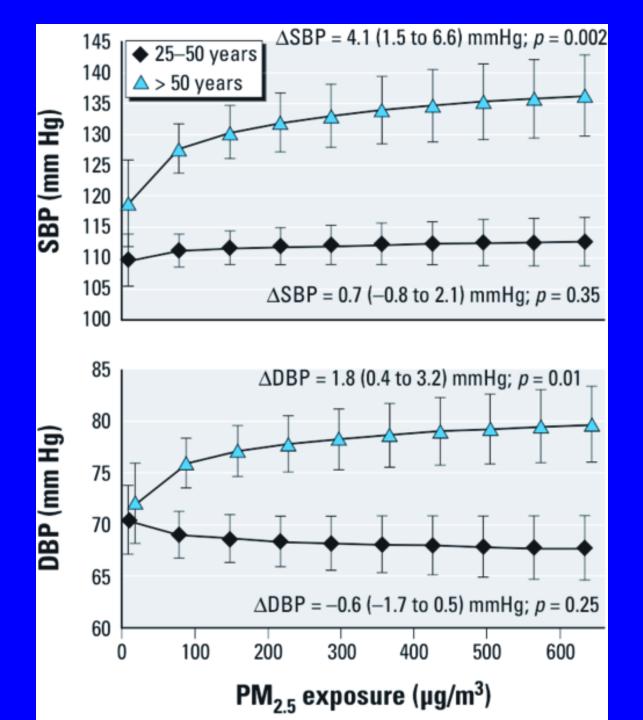
Table 2. Adjusted relative risk estimates^a for various increments of exposure from cigarette smoking (versus never smokers), second hand cigarette smoke, and ambient air pollution from the present analysis and selected comparison studies.

	Increments of	Adjusted RR (95% CI)			Estimated Daily	
Source of risk estimate	Exposure	Lung Cancer	IHD	CVD	CPD	Dose PM _{2.5} (mg) ^b
ACS- present analysis	<3 (1.5) cigs/day	10.44 (7.30-14.94)	1.61 (1.27-2.03)	1.58 (1.32-1.89)	1.72 (1.46-2.03)	18
ACS- present analysis	4-7 (5.5) cigs/day	8.03 (5.89-10.96)	1.64 (1.37-1.96)	1.73 (1.51-1.97)	1.84 (1.63-2.08)	66
ACS- present analysis	8-12 (10) cigs/day	11.63 (9.51-14.24)	2.07 (1.84-2.31)	2.01 (1.84-2.19)	2.10 (1.94-2.28)	120
ACS- present analysis	13-17 (15) cigs/day	13.93 (11.04-17.58)	2.18 (1.89-2.52)	1.99 (1.77-2.23)	2.08 (1.87-2.32)	180
ACS- present analysis	18-22 (20) cigs/day	19.88 (17.14-23.06)	2.36 (2.19-2.55)	2.42 (2.28-2.56)	2.52 (2.39-2.66)	240
ACS- present analysis	23-27 (25) cigs/day	23.82 (18.80-30.18)	2.29 (1.91-2.75)	2.33 (2.02-2.69)	2.33 (2.03-2.67)	300
ACS- present analysis	28-32 (30) cigs/day	26.82 (22.54-31.91)	2.22 (1.97-2.49)	2.17 (1.98-2.38)	2.39 (2.19-2.60)	360
ACS- present analysis	33-37 (35) cigs/day	26.72 (18.58-38.44)	2.58 (1.91-3.47)	2.52 (1.98-3.19)	2.83 (2.28-3.52)	420
ACS- present analysis	38-42 (40) cigs/day	30.63 (25.79-36.38)	2.30 (2.05-2.59)	2.37 (2.16-2.59)	2.61 (2.40-2.84)	480
ACS- present analysis	43+ (45) cigs/day	39.16 (31.13-49.26)	2.00 (1.62-2.48)	2.17 (1.84-2.56)	2.37 (2.04-2.76)	540
ACS-air pol. original	24.5 µg/m ³ ambient PM _{2.5}				1.31(1.17-1.46)	0.44
ACS-air pol. extend.	10 µg/m ³ ambient PM _{2.5}	1.14(1.04-1.23)	1.18(1.14-1.23)	1.12(1.08-1.15)	1.09(1.03-1.16)	0.18
HSC-air pol. original	18.6 µg/m ³ ambient PM _{2.5}				1.37(1.11-1.68)	0.33
HSC-air pol. extend.	10 µg/m ³ ambient PM _{2.5}	1.21(0.92-1.69)		1.28(1.13-1.44)		0.18
WHI-air pol.	10 μg/m ³ ambient PM _{2.5}			1.24(1.09-1.41) ^c		0.18
SGR-SHS	Low- moderate SHS exp.			1.16(1.03-1.32)		0.36
SGR-SHS	Moderate-high SHS exp			1.26(1.12-1.42)		0.90
SGR-SHS	Live with smoking spouse	1.21(1.13-1.30)				0.54
SGR-SHS	Work with SHS exposure	1.22(1.13-1.33)				0.72
INTERHEART	1-7 hrs/wk SHS exp.		1.24(1.17-1.32) ^d			0.36
INTERHEART	Live with smoking spouse		1.28(1.12-1.47) ^d			0.54

Pope et al. Environmental Health Perspectives 2011, in press

Intervention to Lower Household Wood Smoke Exposure in Guatemala Reduces ST-Segment Depression on Electrocardiograms

John McCracken,^{1,2} Kirk R. Smith,² Peter Stone,³ Anaité Díaz,⁴ Byron Arana,⁴ and Joel Schwartz¹


¹Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA; ²Environmental Sciences Division, University of California, Berkeley, California, USA; ³Brigham and Women's Hospital, Boston, Massachusetts, USA; ⁴Center for Health Studies, Universidad del Valle, Guatemala City, Guatemala

EHP Nov, 2011

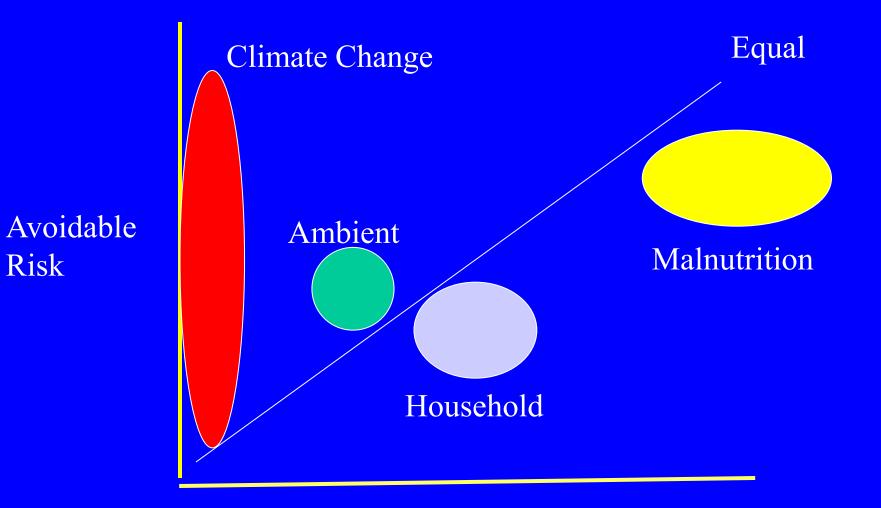
Table 3. Odds ratios (ORs) for nonspecific ST-segment depression (30-min average ≤ -1 mm, regardless of slope) associated with chimney-stove intervention compared with open fire from two study designs: between-groups and before-and-after analyses.

	Crude	Adjusted		
Comparison	OR (95% CI)	<i>p</i> -Value	OR (95% CI)	<i>p</i> -Value
Between-groups	0.34 (0.15, 0.81)	0.015	0.26 (0.08, 0.90)*	0.033
Before-and-after (only control group)	0.41 (0.24, 0.70)	0.001	0.28 (0.12, 0.63)*	0.002

*Adjusted for age (quadratic), BMI (quadratic), asset index category, ever smoking, SHS, owning a wood-fired sauna, recent use of wood-fired sauna, and time of day (natural spline with 5 degrees of freedom). *Adjusted for age (quadratic), day of week, season (wet/dry), daily average temperature and relative humidity, daily rainfall, interactions of weather variables with season, recent use of wood-fired sauna, and time of day (natural spline with 5 degrees of freedom).

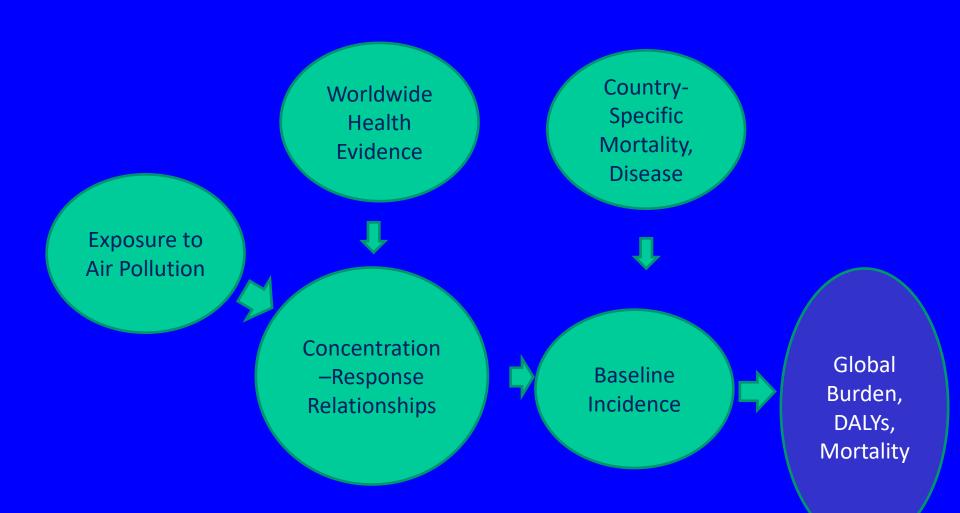
Household Air Pollution and Blood Pressure

In Yunnan


Baumgartner et al. Environmental Health Perspectives 2011 JAMA | Original Investigation

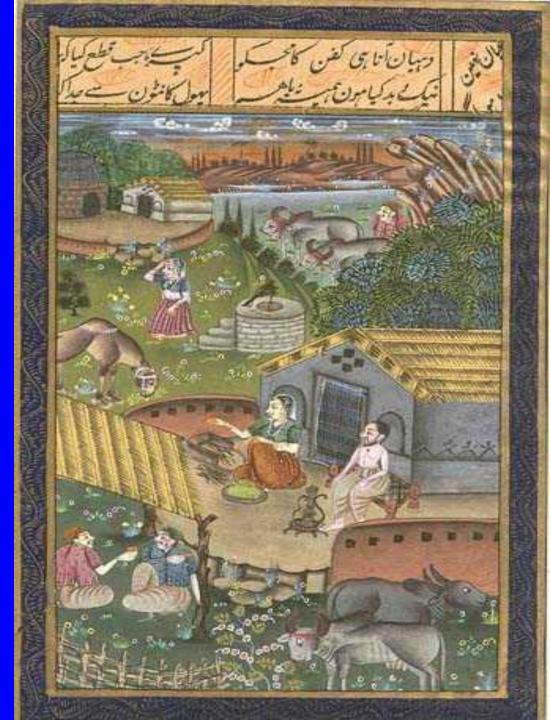
Association of Solid Fuel Use With Risk of Cardiovascular and All-Cause Mortality in Rural China

Kuai Yu, MD; Gaokun Qiu, MD, PhD; Ka-Hung Chan, MSc; Kin-Bong Hubert Lam, PhD; Om P. Kurmi, PhD; Derrick A. Bennett, PhD; Canqing Yu, MD, PhD; An Pan, PhD; Jun Lv, MD, PhD; Yu Guo, MSc; Zheng Bian, MSc; Ling Yang, PhD; Yiping Chen, DPhil; Frank B. Hu, MD, PhD; Zhengming Chen, DPhil; Liming Li, MD, MPH; Tangchun Wu, MD, PhD


April 3, 2018

A Cooking fuel	J.				
Smoking Status and Fuel Type	No. of Deaths	Mortality Rate per 100 000 Person-Years	Rate Difference per 100000 Person-Years (95% CI)	Hazard Ratio (95% CI)	
Cardiovascular mortality					
Never smoker					
Clean fuels	101	132	[Reference]	1.00 (0.81 to 1.24)	
Solid fuels	2149	306	174 (105 to 243)	1.25 (1.14 to 1.38)	-8
Ever smoker					
Clean fuels	79	156	24 (-58 to 106)	1.49 (1.19 to 1.87)	
Solid fuels	808	402	270 (181 to 359)	1.76 (1.64 to 1.88)	
All-cause mortality					
Never smoker					
Clean fuels	489	418	[Reference]	1.00 (0.90 to 1.11)	
Solid fuels	5362	808	390 (283 to 497)	1.11(1.05 to 1.17)	
Ever smoker					
Clean fuels	366	547	129 (-15 to 273)	1.34 (1.20 to 1.49)	
Solid fuels	2593	1109	691 (540 to 842)	1.52 (1.46 to 1.58)	5 1.0 2.0 3.0

Attributable Risk


Estimating the Burden of Disease due to Air Pollution for future interventions – uncertainty across the board

Avoidable burden is not always the same as attributable burden

Many thanks

For publications & presentations: Just "Google" Kirk R. Smith

