National Update and Issues

- National Update Policy Issues, Directions & Dilemmas
- 2. National Update: Legal & Structural Developments
- 3. Analysis of Orders of ATE
- 4. Renewables for the Power Sector

ATE overturned the KERC order and held that

- The functions of the RC do not include one that would enable it to slash the investment planned by a utility
- It is a "commercial decision of the utility" and not liable to be interfered till the utility asked for return on such investment
- Only after the investment can the RC do a prudence check

1 The ATE observed that

 "When technical experts ...have applied their mind ... it is nor for the Commission to examine by appointing another expert committee.. no expert agrees with another expert"

- Commission cannot cap the planned investment
- I lt has to allow interest on expenditure incurred on unsanctioned projects
- è The Commission has no jurisdiction to regulate capital expenditure

 The pro-consumer emphasis of the E-Act could be rendered ineffective due to many ATE orders

- Consumers are weakly or not represented in the ATE
 - Lack of access to lawyers
 - Distance of the ATE
 - Lack of other resources
- It is extremely necessary to address these important precedents of the ATE orders

Commercial Energy Supply in India (2003-4)							
Source	Supply	Cal value	PJ				
Coal	415 Mt	18.8 MJ/kg	7279				
Oil(D)	33	41.MJ/kg	1379				
Imports	84		3511				
Nat Gas	31.96 Bm3	9300	1282				
Hydro	752420 MU	85% eff	339				
Nuclear	17780 MU	25% eff	256				
Wind	3402 MU	40% eff	30.6				
Total			14078				

#1 Sustainability								
I	ndia -	Fossil	Fuel ı	reserv	es			
	Fuel	Reserves	Prodn 2003-4	R/P ratio				
	Coal +Lignite (Million Tonnes)	34000	414	~83 (P) 140 P+I				
	Oil (Million Tonnes)	760	33 (117)	23 (7)				
	N.Gas Billion m3	920	32	29				
	Uranium	61000	PHWR	~50				
	Data Sour	ce Plg Comm I	EPC, 2006	10GW				

Pov	wer Gei	neration 1	Fech	nnoloc	jies
Technology	Efficiency	Indian Experience	Status	Capital Cost (Rs/kW)	Electricit (Rs/kWh
Solar Flat Plate Collectors	2%	10 kW exptl unit at IITM 80s	D	Rs. 300.000	-
Solar Chimney	1 %	No experience 50 kW Spain	D	Rs. 200,000 (\$4600/kW)	-
Solar Pond	1-2%	Experience for hot water Bhuj (Israel power 5MW)	D		
Line focussing Parabolic	Peak 20% Average 11-14%	50 kW system in SEC Planned 35MW solar in 140 MW ISCC at Mathania	С	Rs. 140,000 (\$3000/kW) ~390 MW of operating plants	15 -20c/k\ Rs. 6-10/k
Paraboloid Dish	29% peak 12-18%	Demo unit 10 kW Vellore	D	Rs. 250,000	
Central Tower	23% peak 7-14%	No experience	D	~Rs. 300,000 (\$4700/kW)	

Geothermal/OTEC/Tidal/Wave							
		World	Cost Estimates				
Geothermal	COMMERCIAL	8240 MW	4c/kWh \$2000/kW No Indian experience 50 MW plant J & K planned				
Tidal	PROTOTYPE	240 MW FRANCE	LF 20% No Indian experience				
OTEC	PROTOTYPE	50 kW 210 kW NELHA	India 1MW gross plant under construction				
Wave Energy	PROTOTYPE	< 1MW Grid Connected	India 150kW plant Thiruvananthpuram				

State	Potential of SWHS	otential of SWHS					
	Electricity savings	Collector area					
	(GWh)	(million m ²)					
1 Tamil Nad	lu 920	4.7					
2 Karnataka	a 780	3.6					
3 Rajasthar	n 450	2.1					
4 Haryana	300	1.3					
5 Assam	30	0.1					
6 Maharash	tra 1620	7.6					
India	12200	57.0					

S. No.	Equipment	Rating	Initial cost	Annual Electricity Cost	ALCC (Rs)	Cost of electricity as
	Equipment		(HS)	(Rs)		of ALCC
1.	Motor	20 hp	45,000	600,000	605,720	99.0
	EE Motor	20 hp	60,000	502,600	512,700	98.0
l.	Incandescent Lamp	100 W	10	1168	1198	97.5
ŀ.	CFL	11 W	350	128	240	53.6

#5 Technology Development/ Cost Reduction Performance of coal based plants (2005-2006)

	Average	Min	Мах
Rating	175 MW	30 MW	500 MW
Net Heat Rate	3218 kcal/kWh	2489 kcal/kWh	6341 kcal/kWh
(Efficiency)	26.8%	34.6%	13.6%
Auxiliary Consumption	9.5%	5.6%	16.2%
CO2 kg/kWh	1.04	0.784	1.61

#5 Technology Development/ Cost Reduction					
Sub-critical Pulverised Fuel	36 – 38%	\$900-1000/kW (Rs 4 crores/MW)			
Super critical pulverised	Net efficiency 40-46%	Capital cost 950-1600\$/kW (20% higher)			
AFBC/CFBC 250 MW Atmospheric Fluidised Bed Combustion	Similar to Sub-critical	Fuel flexible 1000-1600\$/kW			
Pressurised Fluidised Bed Combustion (PFBC)		\$1300-\$1400/kW			
Integrated Gasification and Combined Cycle (IGCC)	43-45% 100-320MW (38 - 43% - actual plants)	\$1600-\$2400 Not Commercial Technology			

Distributed Generation options							
	Туре	Status	Capacity factor	Cost of Generated Electricity (d=0.1)	Comments		
Diesel	NR	C, I	N	LF0.5 Rs.5.10/kWh LF 0.8 Rs. 4.85/kWh	Existing base > 10,000 MW as backup.		
Gas Engine	NR	C	N	LF 0.5 Rs. 2.62/kWh LF 0.8 Rs. 2.29/kWh	Relative price of Natural gas low.		
Micro Turbine + Natural Gas	NR	D	N	LF 0.5 Rs. 3.24/kWh LF 0.8 Rs. 2.82/kWh	Technology not proven in India		
Fuel Cell + Natural Gas	NR	D	N	LF 0.5 Rs.6.64/kWh LF 0.8 Rs.4.68/kWh	Demonstration required		
Wind Turbines	R	C, I	13% Avg < 30%	LF 0.2 Rs. 8.71/kWh LF 0.3 Rs. 5.84/kWh	2000 MW already installed		
Photovoltaic	R	C, I	<25%	LF 0.25 Rs. 17/kWh	Niche applications		
Biomass Gasifier Gas – Engine	R	С	N	LF0.5 Rs. 3.16/kWh LF0.8 Rs. 2.59/kWh			
Biomass Cogen.	R	C, I	>50%	LF 0.5 2.40/kWh LF 0.6 2.27/kWh	About 300MW (E) installed		

Comparison								
	Net enerav	Cost	GHG	Resource constraint				
	ratio		eq /kWh)					
Coal based	0.35-0.4	1.2-2.2	0.85-0.9	Fossil fuel				
Solar PV	1.6-4.2	8.5-52	0.05-0.13	Higher cost				
WECS	8-26	1.8-13	0.012- 0.04	Grid penetration				
Biomass	8.5-12.5	2.8-4.2	0.06-0.08	Land				

