The imperative of an accelerated transition to modern fuels: Results from a cost-benefit analysis study

Clean Cooking Mission: A way to transition to completely smoke-free kitchens

Roundtable discussion organised by Prayas and the Collaborative Clean Air Policy Centre (CCAPC)

June 20, 2018

New Delhi

Study to assess cost-effectiveness of transition...1

Area covered - 20 state	s, Rural-Urban Disaggregation	Health impacts	
Time period- 15 years (2015-30), Annual treatment		 5 Diseases (IHD, Lung Cance Stroke, ALRI, COPD) 	
Baseline Scenario	 Past adoption trends, recent policy changes Traditional fuel use in 2020: 25% 	Segregated impacts for men women, children	
	• Inautional ruel use in 2030: 35%	Fuels considered	
PMUY Intervention Scenario	 ↑ LPG adoption → focus beyond connections Traditional fuel use in 2030: 20% 	 Traditional fuels (Biomass, Coal, Kerosene) Modern fuels (LPG, PNG, Electricity, Biogas) 	
Multi-Fuel Intervention Scenario	 Focus not just on LPG but other modern fuels Traditional fuel use in 2030: 13% 	Costs considered	
		Connection	
SDG Intervention Scenario	 Aggressive push for modern fuels→ SDG goal Traditional fuel use in 2030: 0% 	Fuel & DistributionStoveCapital investment, if any	

Study to assess cost-effectiveness of transition...2

Health benefits assessment

- Integrated Exposure Response Curves → impact on DALYS (disease burden) due to exposure
- Estimation of averted DALYs based on reduction in exposure due to transition

Cost impact assessment

- Cumulative costs based on fuel adoption trajectories
- Costs based on consumption required for meeting all cooking needs while accounting for stove and fuel efficiencies
- Cost estimation based on 2015 prices in INR

Cost- effectiveness Analysis

- Measured as incremental cost per averted DALY between Baseline and Intervention scenarios
- WHO-Choice Model
 - Highly Cost- effective : incremental cost per averted DALY < per capita GDP
 - Cost-effective : incremental cost per averted DALY < 3 times per capita GDP

Significant Health Benefits

Baseline \rightarrow SDG

• 53% Reduction in health impacts

Baseline \rightarrow PMUY

- 16% Reduction in health impacts
- Accelerated transition → save lives, reduces years with illness
- Concerted efforts, significant support required
- Worthwhile social investment even if only health benefits are considered

All interventions \rightarrow highly cost-effective...

- Cost-effectiveness increases over time with increase in modern fuel use
- SDG is the costliest but also the most cost-effective intervention.

...even if there is stacking with traditional stoves

- Modern fuel use highly costeffective even with 40% stacking
- However stacking also erodes away benefits
- 30% stacking in aggressive SDG scenario *comparable* to PMUY with no stacking

Role of Improved Cook Stoves (ICS)

- Analysis with Stove meeting Tier 4 standards
- Introduction of ICS in multi-fuel scenario to assess impacts of various strategies
- ICS stoves \downarrow costs due to \uparrow in efficiency

ICS as modern fuel alternative not cost-effective

- Change in multi-fuel scenario
 - Shift of 17% of total users to ICS.
- The health benefits **drop by 20%** in spite of fewer traditional stove users

ICS to reduce stacking impact is a feasible option

- Change in multi-fuel scenario
 - 40% of stacking of ICS for traditional stove
- **4% reduction in health impact**, so ICS for stacking is useful

Key Insights

- Health benefits significant \rightarrow any transition pathway cost-effective
- The clean cooking challenge \rightarrow predominantly rural
 - Accounts for 80% to 87% of health benefits, costs
 - Policies, programmes focus on rural realities, issues
 - \downarrow population densities, \downarrow paying capacity, \uparrow role of socio-cultural/community norms, disparities in intra-household decision making powers
- > 80% of costs \rightarrow fuel costs in all scenarios
 - Need for reform in fuel pricing, subsidy regime
 - Connection costs and stove costs are not the crucial barrier
- Women and children are at higher risk and should be focus of policy interventions.

Women and children benefit

Risk ratio by gender and for ALRI (children)

Exposure rates higher than men \rightarrow relative risk to lung cancer and COPD \uparrow .

٠

 Policy design and focus to take intra-household inequality in benefits, incomes and bargaining power into account to ensure increased adoption

Is the transition feasible given India's resource constraints?

- Increased LPG consumption and oil imports
 - If incremental LPG demand met via imports \rightarrow impact on < 10% of oil imports in 2030.
 - Can meet demand via freeing up supply
 - phasing out kerosene use, adoption of better fuel efficiency norms
 - increased use of rail freight, electrification of transport
- Electricity sector investments to manage impact on peak demand
 - Significant peak load contribution- 13% of overall residential demand in SDG
 - But, electricity sector inevitably needs investments to manage flux with :
 - Increased renewable energy penetration, especially kW scale solar systems
 - Increased viability and adoption of storage technologies
 - Use of smart appliances and demand response
 - Shifting of agricultural load due to solarisation of agriculture

Multiple fuels, many realities, multi-pronged strategy

- Significant differences in use of tradition fuels, resource endowments across states
- Specific and varying strategies needed optimal use of resources
 - Chattisgarh, Gujarat, Punjab, Haryana, UP \rightarrow aggressive biogas push?
 - Himachal Pradesh, Kerala, \rightarrow increased electricity adoption?
 - Gujarat, Punjab, UP \rightarrow \uparrow urban PNG penetration to free LPG for rural use?
 - PNG-LPG displacement can be across states as well
- Can explore options for district/block wise plans?

Why we need a clean cooking mission

- Need for concerted efforts to ensure faster transition
 - Focus on complete fuel/ technology uptake not just connections to ensure health benefits
 - Multi-fuel approach preferred \rightarrow increases coverage , optimises resource use, investment
- Efforts needed to ensure rural transition
 - Political commitment , coordinated efforts for state/district/block specific efforts
 - Fuel- related ministries can work with MoHFW, MoWCD to address adoption barriers
 - Fuel pricing, subsidy regime change essential across sectors
- Short-term, medium and long term strategies
 - Connections initial step on long road to sustained use
 - Efforts in R&D for alternative options (ICS, solar cookers etc.) imperative
 - Need to address socio-cultural issues with appropriate medium/long term strategies

Thank you

Prayas (Energy Group) ashwini.dabadge@prayaspune.org ashok@prayaspune.org ann@prayaspune.org Prayas (Health Group) ritu@prayaspune.org shirish@prayaspune.org vinay@prayaspune.org

